-
Notifications
You must be signed in to change notification settings - Fork 4
/
cifar10_input.py
170 lines (145 loc) · 7.16 KB
/
cifar10_input.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""
Utilities for importing the CIFAR10 dataset.
Each image in the dataset is a numpy array of shape (32, 32, 3), with the values
being unsigned integers (i.e., in the range 0,1,...,255).
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import pickle
import sys
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np
version = sys.version_info
class CIFAR10Data(object):
"""
Unpickles the CIFAR10 dataset from a specified folder containing a pickled
version following the format of Krizhevsky which can be found
[here](https://www.cs.toronto.edu/~kriz/cifar.html).
Inputs to constructor
=====================
- path: path to the pickled dataset. The training data must be pickled
into five files named data_batch_i for i = 1, ..., 5, containing 10,000
examples each, the test data
must be pickled into a single file called test_batch containing 10,000
examples, and the 10 class names must be
pickled into a file called batches.meta. The pickled examples should
be stored as a tuple of two objects: an array of 10,000 32x32x3-shaped
arrays, and an array of their 10,000 true labels.
"""
def __init__(self, path):
train_filenames = ['data_batch_{}'.format(ii + 1) for ii in range(5)]
eval_filename = 'test_batch'
metadata_filename = 'batches.meta'
train_images = np.zeros((50000, 32, 32, 3), dtype='uint8')
train_labels = np.zeros(50000, dtype='int32')
for ii, fname in enumerate(train_filenames):
cur_images, cur_labels = self._load_datafile(os.path.join(path, fname))
train_images[ii * 10000 : (ii+1) * 10000, ...] = cur_images
train_labels[ii * 10000 : (ii+1) * 10000, ...] = cur_labels
eval_images, eval_labels = self._load_datafile(
os.path.join(path, eval_filename))
with open(os.path.join(path, metadata_filename), 'rb') as fo:
if version.major == 3:
data_dict = pickle.load(fo, encoding='bytes')
else:
data_dict = pickle.load(fo)
self.label_names = data_dict[b'label_names']
for ii in range(len(self.label_names)):
self.label_names[ii] = self.label_names[ii].decode('utf-8')
self.train_data = DataSubset(train_images, train_labels)
self.eval_data = DataSubset(eval_images, eval_labels)
@staticmethod
def _load_datafile(filename):
with open(filename, 'rb') as fo:
if version.major == 3:
data_dict = pickle.load(fo, encoding='bytes')
else:
data_dict = pickle.load(fo)
assert data_dict[b'data'].dtype == np.uint8
image_data = data_dict[b'data']
image_data = image_data.reshape((10000, 3, 32, 32)).transpose(0, 2, 3, 1)
return image_data, np.array(data_dict[b'labels'])
class AugmentedCIFAR10Data(object):
"""
Data augmentation wrapper over a loaded dataset.
Inputs to constructor
=====================
- raw_cifar10data: the loaded CIFAR10 dataset, via the CIFAR10Data class
- sess: current tensorflow session
- model: current model (needed for input tensor)
"""
def __init__(self, raw_cifar10data, sess, model):
assert isinstance(raw_cifar10data, CIFAR10Data)
self.image_size = 32
# create augmentation computational graph
self.x_input_placeholder = tf.placeholder(tf.float32, shape=[None, 32, 32, 3])
padded = tf.map_fn(lambda img: tf.image.resize_image_with_crop_or_pad(
img, self.image_size + 4, self.image_size + 4),
self.x_input_placeholder)
cropped = tf.map_fn(lambda img: tf.random_crop(img, [self.image_size,
self.image_size,
3]), padded)
flipped = tf.map_fn(lambda img: tf.image.random_flip_left_right(img), cropped)
self.augmented = flipped
self.train_data = AugmentedDataSubset(raw_cifar10data.train_data, sess,
self.x_input_placeholder,
self.augmented)
self.eval_data = AugmentedDataSubset(raw_cifar10data.eval_data, sess,
self.x_input_placeholder,
self.augmented)
self.label_names = raw_cifar10data.label_names
class DataSubset(object):
def __init__(self, xs, ys):
self.xs = xs
self.n = xs.shape[0]
self.ys = ys
self.batch_start = 0
self.cur_order = np.random.permutation(self.n)
path_to_feat_reps = 'cifar10_data/robust_CIFAR_10_feats.npy'
if os.path.exists(path_to_feat_reps):
self.features = np.load(path_to_feat_reps)
else:
self.features = None
def get_next_batch(self, batch_size, multiple_passes=False, reshuffle_after_pass=True):
if self.n < batch_size:
raise ValueError('Batch size can be at most the dataset size')
if not multiple_passes:
actual_batch_size = min(batch_size, self.n - self.batch_start)
if actual_batch_size <= 0:
raise ValueError('Pass through the dataset is complete.')
batch_end = self.batch_start + actual_batch_size
batch_xs = self.xs[self.cur_order[self.batch_start : batch_end], ...]
batch_ys = self.ys[self.cur_order[self.batch_start : batch_end], ...]
self.batch_start += actual_batch_size
return batch_xs, batch_ys
actual_batch_size = min(batch_size, self.n - self.batch_start)
if actual_batch_size < batch_size:
if reshuffle_after_pass:
self.cur_order = np.random.permutation(self.n)
self.batch_start = 0
batch_end = self.batch_start + batch_size
batch_xs = self.xs[self.cur_order[self.batch_start : batch_end], ...]
batch_ys = self.ys[self.cur_order[self.batch_start : batch_end], ...]
if self.features is not None:
batch_fr = self.features[self.cur_order[self.batch_start: batch_end], ...]
self.batch_start += batch_size
return batch_xs, batch_ys, batch_fr
else:
self.batch_start += batch_size
return batch_xs, batch_ys
class AugmentedDataSubset(object):
def __init__(self, raw_datasubset, sess, x_input_placeholder,
augmented):
self.sess = sess
self.raw_datasubset = raw_datasubset
self.x_input_placeholder = x_input_placeholder
self.augmented = augmented
def get_next_batch(self, batch_size, multiple_passes=False, reshuffle_after_pass=True):
raw_batch = self.raw_datasubset.get_next_batch(batch_size, multiple_passes,
reshuffle_after_pass)
images = raw_batch[0].astype(np.float32)
return self.sess.run(self.augmented, feed_dict={self.x_input_placeholder:
raw_batch[0]}), raw_batch[1]