-
-
Notifications
You must be signed in to change notification settings - Fork 293
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a44ba1a
commit e3e910a
Showing
5 changed files
with
737 additions
and
48 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
Copyright 2024 OramaSearch Inc | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
# Orama Plugin Embeddings | ||
|
||
**Orama Plugin Embeddings** allows you to generate fast text embeddings at insert and search time offline, directly on your machine - no OpenAI needed! | ||
|
||
## Installation | ||
|
||
To get started with **Orama Plugin Embeddings**, just install it with npm: | ||
|
||
```sh | ||
npm i @orama/plugin-embeddings | ||
``` | ||
|
||
**Important note**: to use this plugin, you'll also need to install one of the following TensorflowJS backend: | ||
|
||
- `@tensorflow/tfjs` | ||
- `@tensorflow/tfjs-node` | ||
- `@tensorflow/tfjs-backend-webgl` | ||
- `@tensorflow/tfjs-backend-cpu` | ||
- `@tensorflow/tfjs-backend-wasm` | ||
|
||
For example, if you're running Orama on the browser, we highly recommend using `@tensorflow/tfjs-backend-webgl`: | ||
|
||
```sh | ||
npm i @tensorflow/tfjs-backend-webgl | ||
``` | ||
|
||
If you're using Orama in Node.js, we recommend using `@tensorflow/tfjs-node`: | ||
|
||
```sh | ||
npm i @tensorflow/tfjs-node | ||
``` | ||
|
||
## Usage | ||
|
||
```js | ||
import { create } from '@orama/orama' | ||
import { pluginEmbeddings } from '@orama/plugin-embeddings' | ||
import '@tensorflow/tfjs-node' // Or any other appropriate TensorflowJS backend | ||
|
||
const plugin = await pluginEmbeddings({ | ||
embeddings: { | ||
defaultProperty: 'embeddings', // Property used to store generated embeddings | ||
onInsert: { | ||
generate: true, // Generate embeddings at insert-time | ||
properties: ['description'], // properties to use for generating embeddings at insert time | ||
verbose: true, | ||
} | ||
} | ||
}) | ||
|
||
const db = await create({ | ||
schema: { | ||
description: 'string', | ||
embeddings: 'vector[512]' // Orama generates 512-dimensions vectors | ||
}, | ||
plugins: [plugin] | ||
}) | ||
``` | ||
|
||
Example usage at insert time: | ||
|
||
```js | ||
await insert(db, { | ||
description: 'Classroom Headphones Bulk 5 Pack, Student On Ear Color Varieties' | ||
}) | ||
|
||
await insert(db, { | ||
description: 'Kids Wired Headphones for School Students K-12' | ||
}) | ||
|
||
await insert(db, { | ||
description: 'Kids Headphones Bulk 5-Pack for K-12 School' | ||
}) | ||
|
||
await insert(db, { | ||
description: 'Bose QuietComfort Bluetooth Headphones' | ||
}) | ||
``` | ||
|
||
Orama will automatically generate text embeddings and store them into the `embeddings` property. | ||
|
||
Then, you can use the `vector` or `hybrid` setting to perform hybrid or vector search at runtime: | ||
|
||
```js | ||
await search(db, { | ||
term: 'Headphones for 12th grade students', | ||
mode: 'vector' | ||
}) | ||
``` | ||
|
||
Orama will generate embeddings at search time and perform vector or hybrid search for you. | ||
|
||
# License | ||
|
||
[Apache 2.0](/LICENSE.md) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,55 @@ | ||
{ | ||
"name": "@orama/plugin-embeddings", | ||
"version": "3.0.0", | ||
"description": "Orama plugin for generating embeddings locally", | ||
"keywords": [ | ||
"orama", | ||
"embeddings", | ||
"secure proxy", | ||
"vector search" | ||
], | ||
"license": "Apache-2.0", | ||
"main": "./dist/index.js", | ||
"type": "module", | ||
"exports": { | ||
".": { | ||
"require": "./dist/index.cjs", | ||
"import": "./dist/index.js", | ||
"types": "./dist/index.d.ts", | ||
"browser": "./dist/index.global.js" | ||
} | ||
}, | ||
"bugs": { | ||
"url": "https://github.com/askorama/orama/issues" | ||
}, | ||
"homepage": "https://github.com/askorama/orama#readme", | ||
"repository": { | ||
"type": "git", | ||
"url": "git+https://github.com/askorama/orama.git" | ||
}, | ||
"sideEffects": false, | ||
"types": "./dist/index.d.ts", | ||
"files": [ | ||
"dist" | ||
], | ||
"scripts": { | ||
"build": "tsup --config tsup.lib.js", | ||
"lint": "exit 0", | ||
"test": "exit 0" | ||
}, | ||
"publishConfig": { | ||
"access": "public" | ||
}, | ||
"devDependencies": { | ||
"@orama/orama": "workspace:*", | ||
"@types/node": "^20.9.0", | ||
"tsup": "^7.2.0", | ||
"typescript": "^5.0.0" | ||
}, | ||
"dependencies": { | ||
"@tensorflow-models/universal-sentence-encoder": "^1.3.3", | ||
"@tensorflow/tfjs": "^4.21.0", | ||
"@tensorflow/tfjs-backend-cpu": "^4.21.0", | ||
"@tensorflow/tfjs-node": "^4.21.0" | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
import type { AnyOrama, SearchParams, TypedDocument, OramaPluginAsync, PartialSchemaDeep } from '@orama/orama' | ||
import use from '@tensorflow-models/universal-sentence-encoder' | ||
|
||
export type PluginEmbeddingsParams = { | ||
embeddings: { | ||
defaultProperty: string | ||
onInsert?: { | ||
generate: boolean | ||
properties: string[] | ||
verbose?: boolean | ||
} | ||
} | ||
} | ||
|
||
function getPropertyValue (obj: object, path: string) { | ||
return path.split('.').reduce((current, key) => | ||
current && current[key] !== undefined ? current[key] : undefined, obj | ||
) | ||
} | ||
|
||
function getPropertiesValues(schema: object, properties: string[]) { | ||
return properties | ||
.map(prop => getPropertyValue(schema, prop)) | ||
.filter(value => value !== undefined) | ||
.join('. ') | ||
} | ||
|
||
export const embeddingsType = 'vector[512]' | ||
|
||
export async function pluginEmbeddings(pluginParams: PluginEmbeddingsParams): OramaPluginAsync { | ||
const model = await use.load() | ||
|
||
return { | ||
name: 'orama-plugin-embeddings', | ||
|
||
async beforeInsert<T extends TypedDocument<any>>(_db: AnyOrama, _id: string, params: PartialSchemaDeep<T>) { | ||
if (!pluginParams.embeddings?.onInsert?.generate) { | ||
return | ||
} | ||
|
||
if (!pluginParams.embeddings?.onInsert?.properties) { | ||
throw new Error('Missing "embeddingsConfig.properties" parameter for plugin-secure-proxy') | ||
} | ||
|
||
const properties = pluginParams.embeddings.onInsert.properties | ||
const values = getPropertiesValues(params, properties) | ||
|
||
if (pluginParams.embeddings.onInsert.verbose) { | ||
console.log(`Generating embeddings for properties "${properties.join(', ')}": "${values}"`) | ||
} | ||
|
||
const embeddings = await model.embed(values) | ||
|
||
params[pluginParams.embeddings.defaultProperty] = await embeddings.data() | ||
}, | ||
|
||
async beforeSearch<T extends AnyOrama>(_db: AnyOrama, params: SearchParams<T, TypedDocument<any>>) { | ||
if (params.mode !== 'vector' && params.mode !== 'hybrid') { | ||
return | ||
} | ||
|
||
if (params?.vector?.value) { | ||
return | ||
} | ||
|
||
if (!params.term) { | ||
throw new Error('Neither "term" nor "vector" parameters were provided') | ||
} | ||
|
||
const embeddings = await model.embed(params.term) | ||
|
||
if (!params.vector) { | ||
params.vector = { | ||
// eslint-disable-next-line | ||
// @ts-ignore | ||
property: params?.vector?.property ?? pluginParams.embeddings.defaultProperty, | ||
value: embeddings | ||
} | ||
} | ||
|
||
params.vector.value = embeddings | ||
} | ||
} | ||
} |
Oops, something went wrong.