-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTransStat.py
137 lines (112 loc) · 4.84 KB
/
TransStat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# This file is used by transition-statistics.py
import numpy as np
import matplotlib.pyplot as plt
def sigmoid(x):
"""Sigmoid activation function."""
return 1 / (1 + np.exp(-x))
class NeuralModel:
def __init__(self):
# Neuron population parameters
self.DrF = 0.4 # Baseline drive for F neurons !change both to 0.3 if self excitation is at 0.1
self.DrS = 0.4 # Baseline drive for S neurons
self.ExF = 7 # Excitation parameter for F neurons
self.ExS = 7 # Excitation parameter for S neurons
self.TauSF = 3.0 # Time constant for S and F neuron dynamics
# Nonesential connections
self.W_SS = 0.0
self.W_FF = 0.0
self.W_IF = -0.2
self.W_IS = -0.2
self.W_ISIF =-0.2
self.W_IFIS =-0.2
self.W_IFF = -0.1
self.W_ISS = -0.1
# IS interneuron parameters
self.W_ISF = -1.1 # Weight of IS to F neurons
self.ExIS = 3 # Excitation of IS neurons
self.DrIS = -0.2 # Baseline drive for IS neurons
self.W_SIS = .9 # Weight of S to IS neurons
# IF interneuron parameters
self.W_IFS = -1.1 # Weight of IF to S neurons
self.ExIF = 3 # Excitation of IF neurons
self.DrIF = -0.2 # Baseline drive for IF neurons
self.W_FIF = .9 # Weight of F to IF neurons
# Noise level
self.noise_level = 0.05
def compute_derivatives(self, F, S, IS, IF, DrF, DrS):
"""Compute derivatives for F, S, IS, and IF neurons."""
# IS interneuron dynamics
dISdt = (sigmoid(self.ExIS * (self.W_SIS * S + self.W_IS * IS + self.W_IFIS * IF + self.DrIS)) - IS + self.noise_level * np.random.randn())
# IF interneuron dynamics
dIFdt = (sigmoid(self.ExIF * (self.W_FIF * F + self.W_IF * IF + self.W_ISIF * IS + self.DrIF)) - IF + self.noise_level * np.random.randn())
# F neuron dynamics
dFdt = (sigmoid(self.ExF * (self.W_ISF * IS + self.W_FF * F + self.W_IFF * IF + DrF)) - F + self.noise_level * np.random.randn()) / self.TauSF
# S neuron dynamics
dSdt = (sigmoid(self.ExS * (self.W_IFS * IF + self.W_SS * S + self.W_ISS * IS + DrS)) - S + self.noise_level * np.random.randn()) / self.TauSF
return dFdt, dSdt, dISdt, dIFdt
def simulate(self, t_max=1000, dt=0.1):
"""Simulate the neural model over time."""
# Time array
t = np.linspace(0, t_max, int(t_max / dt) + 1)
# Initial conditions
F = np.zeros_like(t)
S = np.zeros_like(t)
IS = np.zeros_like(t)
IF = np.zeros_like(t)
F[0] = 0.6
S[0] = 0.7
IS[0] = sigmoid(self.ExIS * (self.W_SIS * S[0] + self.DrIS))
IF[0] = sigmoid(self.ExIF * (self.W_FIF * F[0] + self.DrIF))
# Simulation loop
for i in range(1, len(t)):
# Define stimulation protocol
if 0 < t[i] < 500: # Low DA state
DrS = DrF = 0.4
self.ExF, self.ExS = 7, 7
self.W_ISF = self.W_IFS = -1.1
self.TauSF = 3.0
self.DrIS = self.DrIF = -0.2
else: # High DA state + Safety
DrF = self.DrF
self.ExF, self.ExS = 12, 12
self.W_ISF = -0.8
self.W_IFS = -0.8
self.TauSF = 5.0
#self.ExIS = self.ExIF = 3
self.DrIS = self.DrIF = -0.17
# Compute derivatives
dF, dS, dIS, dIF = self.compute_derivatives(F[i-1], S[i-1], IS[i-1], IF[i-1], DrF, DrS)
# Update state variables
F[i] = F[i-1] + dF * dt
S[i] = S[i-1] + dS * dt
IS[i] = IS[i-1] + dIS * dt
IF[i] = IF[i-1] + dIF * dt
return t, F, S, IS, IF
def plot_results(self, t, F, S, IS, IF):
"""Plot simulation results."""
plt.figure(figsize=(10, 3))
plt.plot(t, S, label="S", color='blue')
plt.plot(t, F, label="F", color='red')
#plt.plot(t, IS, label="IS", color='green')
#plt.plot(t, IF, label="IF", color='purple')
plt.xlabel("Time")
plt.ylabel("Activity")
# Highlight different states
for i in range(0, 5):
plt.axvspan(i*1000, 200+i*1000, facecolor='0.2', alpha=0.2)
plt.xlim(0, 5000)
plt.ylim(0, 1)
# State labels
states = ['Negative', 'Positive', 'Neutral', 'Neutral', 'Neutral']
for i, state in enumerate(states):
plt.text(100 + i*1000, 0.2, state, va='bottom', ha='center', rotation=90)
plt.legend()
plt.tight_layout()
plt.savefig('NonDiffAllToAll.pdf')
plt.show()
def main():
model = NeuralModel()
t, F, S, IS, IF = model.simulate()
model.plot_results(t, F, S, IS, IF)
if __name__ == "__main__":
main()