-
Notifications
You must be signed in to change notification settings - Fork 103
/
configs.py
98 lines (85 loc) · 4.66 KB
/
configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
class Config:
# network meta params
python_path = '/home/assafsho/PycharmProjects/network/venv/bin/python2.7'
scale_factors = [[2.0, 2.0]] # list of pairs (vertical, horizontal) for gradual increments in resolution
base_change_sfs = [] # list of scales after which the input is changed to be the output (recommended for high sfs)
max_iters = 3000
min_iters = 256
min_learning_rate = 9e-6 # this tells the algorithm when to stop (specify lower than the last learning-rate)
width = 64
depth = 8
output_flip = True # geometric self-ensemble (see paper)
downscale_method = 'cubic' # a string ('cubic', 'linear'...), has no meaning if kernel given
upscale_method = 'cubic' # this is the base interpolation from which we learn the residual (same options as above)
downscale_gt_method = 'cubic' # when ground-truth given and intermediate scales tested, we shrink gt to wanted size
learn_residual = True # when true, we only learn the residual from base interpolation
init_variance = 0.1 # variance of weight initializations, typically smaller when residual learning is on
back_projection_iters = [10] # for each scale num of bp iterations (same length as scale_factors)
random_crop = True
crop_size = 128
noise_std = 0.0 # adding noise to lr-sons. small for real images, bigger for noisy images and zero for ideal case
init_net_for_each_sf = False # for gradual sr- should we optimize from the last sf or initialize each time?
# Params concerning learning rate policy
learning_rate = 0.001
learning_rate_change_ratio = 1.5 # ratio between STD and slope of linear fit, under which lr is reduced
learning_rate_policy_check_every = 60
learning_rate_slope_range = 256
# Data augmentation related params
augment_leave_as_is_probability = 0.05
augment_no_interpolate_probability = 0.45
augment_min_scale = 0.5
augment_scale_diff_sigma = 0.25
augment_shear_sigma = 0.1
augment_allow_rotation = True # recommended false for non-symmetric kernels
# params related to test and display
run_test = True
run_test_every = 50
display_every = 20
name = 'test'
plot_losses = False
result_path = os.path.dirname(__file__) + '/results'
create_results_dir = True
input_path = local_dir = os.path.dirname(__file__) + '/test_data'
create_code_copy = True # save a copy of the code in the results folder to easily match code changes to results
display_test_results = True
save_results = True
def __init__(self):
# network meta params that by default are determined (by other params) by other params but can be changed
self.filter_shape = ([[3, 3, 3, self.width]] +
[[3, 3, self.width, self.width]] * (self.depth-2) +
[[3, 3, self.width, 3]])
########################################
# Some pre-made useful example configs #
########################################
# Basic default config (same as not specifying), non-gradual SRx2 with default bicubic kernel (Ideal case)
# example is set to run on set14
X2_ONE_JUMP_IDEAL_CONF = Config()
X2_ONE_JUMP_IDEAL_CONF.input_path = os.path.dirname(__file__) + '/set14'
# Same as above but with visualization (Recommended for one image, interactive mode, for debugging)
X2_IDEAL_WITH_PLOT_CONF = Config()
X2_IDEAL_WITH_PLOT_CONF.plot_losses = True
X2_IDEAL_WITH_PLOT_CONF.run_test_every = 20
X2_IDEAL_WITH_PLOT_CONF.input_path = os.path.dirname(__file__) + '/example_with_gt'
# Gradual SRx2, to achieve superior results in the ideal case
X2_GRADUAL_IDEAL_CONF = Config()
X2_GRADUAL_IDEAL_CONF.scale_factors = [[1.0, 1.5], [1.5, 1.0], [1.5, 1.5], [1.5, 2.0], [2.0, 1.5], [2.0, 2.0]]
X2_GRADUAL_IDEAL_CONF.back_projection_iters = [6, 6, 8, 10, 10, 12]
X2_GRADUAL_IDEAL_CONF.input_path = os.path.dirname(__file__) + '/set14'
# Applying a given kernel. Rotations are canceled sense kernel may be non-symmetric
X2_GIVEN_KERNEL_CONF = Config()
X2_GIVEN_KERNEL_CONF.output_flip = False
X2_GIVEN_KERNEL_CONF.augment_allow_rotation = False
X2_GIVEN_KERNEL_CONF.back_projection_iters = [2]
X2_GIVEN_KERNEL_CONF.input_path = os.path.dirname(__file__) + '/kernel_example'
# An example for a typical setup for real images. (Kernel needed + mild unknown noise)
# back-projection is not recommended because of the noise.
X2_REAL_CONF = Config()
X2_REAL_CONF.output_flip = False
X2_REAL_CONF.back_projection_iters = [0]
X2_REAL_CONF.input_path = os.path.dirname(__file__) + '/real_example'
X2_REAL_CONF.noise_std = 0.0125
X2_REAL_CONF.augment_allow_rotation = False
X2_REAL_CONF.augment_scale_diff_sigma = 0
X2_REAL_CONF.augment_shear_sigma = 0
X2_REAL_CONF.augment_min_scale = 0.75