forked from KhronosGroup/Vulkan-ValidationLayers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vklayertests_buffer_image_memory_sampler.cpp
14791 lines (12544 loc) · 727 KB
/
vklayertests_buffer_image_memory_sampler.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2015-2022 The Khronos Group Inc.
* Copyright (c) 2015-2022 Valve Corporation
* Copyright (c) 2015-2022 LunarG, Inc.
* Copyright (c) 2015-2022 Google, Inc.
* Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Author: Chia-I Wu <olvaffe@gmail.com>
* Author: Chris Forbes <chrisf@ijw.co.nz>
* Author: Courtney Goeltzenleuchter <courtney@LunarG.com>
* Author: Mark Lobodzinski <mark@lunarg.com>
* Author: Mike Stroyan <mike@LunarG.com>
* Author: Tobin Ehlis <tobine@google.com>
* Author: Tony Barbour <tony@LunarG.com>
* Author: Cody Northrop <cnorthrop@google.com>
* Author: Dave Houlton <daveh@lunarg.com>
* Author: Jeremy Kniager <jeremyk@lunarg.com>
* Author: Shannon McPherson <shannon@lunarg.com>
* Author: John Zulauf <jzulauf@lunarg.com>
* Author: Tobias Hector <tobias.hector@amd.com>
*/
#include <type_traits>
#include "cast_utils.h"
#include "layer_validation_tests.h"
TEST_F(VkLayerTest, BufferExtents) {
TEST_DESCRIPTION("Perform copies across a buffer, provoking out-of-range errors.");
AddRequiredExtensions(VK_KHR_COPY_COMMANDS_2_EXTENSION_NAME);
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
const bool copy_commands2 = CanEnableDeviceExtension(VK_KHR_COPY_COMMANDS_2_EXTENSION_NAME);
ASSERT_NO_FATAL_FAILURE(InitState());
PFN_vkCmdCopyBuffer2KHR vkCmdCopyBuffer2Function = nullptr;
if (copy_commands2) {
vkCmdCopyBuffer2Function = (PFN_vkCmdCopyBuffer2KHR)vk::GetDeviceProcAddr(m_device->handle(), "vkCmdCopyBuffer2KHR");
}
const VkDeviceSize buffer_size = 2048;
VkBufferObj buffer_one;
VkBufferObj buffer_two;
VkMemoryPropertyFlags reqs = 0;
buffer_one.init_as_src_and_dst(*m_device, buffer_size, reqs);
buffer_two.init_as_src_and_dst(*m_device, buffer_size, reqs);
VkBufferCopy copy_info = {4096, 256, 256};
m_commandBuffer->begin();
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-vkCmdCopyBuffer-srcOffset-00113");
vk::CmdCopyBuffer(m_commandBuffer->handle(), buffer_one.handle(), buffer_two.handle(), 1, ©_info);
m_errorMonitor->VerifyFound();
// equivalent test using KHR_copy_commands2
if (copy_commands2 && vkCmdCopyBuffer2Function) {
const VkBufferCopy2KHR copy_info2 = {VK_STRUCTURE_TYPE_BUFFER_COPY_2_KHR, NULL, copy_info.srcOffset, copy_info.dstOffset,
copy_info.size};
const VkCopyBufferInfo2KHR copy_buffer_info2 = {
VK_STRUCTURE_TYPE_COPY_BUFFER_INFO_2_KHR, NULL, buffer_one.handle(), buffer_two.handle(), 1, ©_info2};
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkCopyBufferInfo2KHR-srcOffset-00113");
vkCmdCopyBuffer2Function(m_commandBuffer->handle(), ©_buffer_info2);
m_errorMonitor->VerifyFound();
}
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-vkCmdCopyBuffer-dstOffset-00114");
copy_info = {256, 4096, 256};
vk::CmdCopyBuffer(m_commandBuffer->handle(), buffer_one.handle(), buffer_two.handle(), 1, ©_info);
m_errorMonitor->VerifyFound();
// equivalent test using KHR_copy_commands2
if (copy_commands2 && vkCmdCopyBuffer2Function) {
const VkBufferCopy2KHR copy_info2 = {VK_STRUCTURE_TYPE_BUFFER_COPY_2_KHR, NULL, copy_info.srcOffset, copy_info.dstOffset,
copy_info.size};
const VkCopyBufferInfo2KHR copy_buffer_info2 = {
VK_STRUCTURE_TYPE_COPY_BUFFER_INFO_2_KHR, NULL, buffer_one.handle(), buffer_two.handle(), 1, ©_info2};
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkCopyBufferInfo2KHR-dstOffset-00114");
vkCmdCopyBuffer2Function(m_commandBuffer->handle(), ©_buffer_info2);
m_errorMonitor->VerifyFound();
}
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-vkCmdCopyBuffer-size-00115");
copy_info = {1024, 256, 1280};
vk::CmdCopyBuffer(m_commandBuffer->handle(), buffer_one.handle(), buffer_two.handle(), 1, ©_info);
m_errorMonitor->VerifyFound();
// equivalent test using KHR_copy_commands2
if (copy_commands2 && vkCmdCopyBuffer2Function) {
const VkBufferCopy2KHR copy_info2 = {VK_STRUCTURE_TYPE_BUFFER_COPY_2_KHR, NULL, copy_info.srcOffset, copy_info.dstOffset,
copy_info.size};
const VkCopyBufferInfo2KHR copy_buffer_info2 = {
VK_STRUCTURE_TYPE_COPY_BUFFER_INFO_2_KHR, NULL, buffer_one.handle(), buffer_two.handle(), 1, ©_info2};
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkCopyBufferInfo2KHR-size-00115");
vkCmdCopyBuffer2Function(m_commandBuffer->handle(), ©_buffer_info2);
m_errorMonitor->VerifyFound();
}
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-vkCmdCopyBuffer-size-00116");
copy_info = {256, 1024, 1280};
vk::CmdCopyBuffer(m_commandBuffer->handle(), buffer_one.handle(), buffer_two.handle(), 1, ©_info);
m_errorMonitor->VerifyFound();
// equivalent test using KHR_copy_commands2
if (copy_commands2 && vkCmdCopyBuffer2Function) {
const VkBufferCopy2KHR copy_info2 = {VK_STRUCTURE_TYPE_BUFFER_COPY_2_KHR, NULL, copy_info.srcOffset, copy_info.dstOffset,
copy_info.size};
const VkCopyBufferInfo2KHR copy_buffer_info2 = {
VK_STRUCTURE_TYPE_COPY_BUFFER_INFO_2_KHR, NULL, buffer_one.handle(), buffer_two.handle(), 1, ©_info2};
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkCopyBufferInfo2KHR-size-00116");
vkCmdCopyBuffer2Function(m_commandBuffer->handle(), ©_buffer_info2);
m_errorMonitor->VerifyFound();
}
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-vkCmdCopyBuffer-pRegions-00117");
copy_info = {256, 512, 512};
vk::CmdCopyBuffer(m_commandBuffer->handle(), buffer_two.handle(), buffer_two.handle(), 1, ©_info);
m_errorMonitor->VerifyFound();
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkBufferCopy-size-01988");
copy_info = {256, 256, 0};
vk::CmdCopyBuffer(m_commandBuffer->handle(), buffer_two.handle(), buffer_two.handle(), 1, ©_info);
m_errorMonitor->VerifyFound();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, MirrorClampToEdgeNotEnabled) {
TEST_DESCRIPTION("Validation should catch using CLAMP_TO_EDGE addressing mode if the extension is not enabled.");
SetTargetApiVersion(VK_API_VERSION_1_0);
ASSERT_NO_FATAL_FAILURE(Init());
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkSamplerCreateInfo-addressModeU-01079");
VkSampler sampler = VK_NULL_HANDLE;
VkSamplerCreateInfo sampler_info = SafeSaneSamplerCreateInfo();
// Set the modes to cause the error
sampler_info.addressModeU = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE;
sampler_info.addressModeV = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE;
sampler_info.addressModeW = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE;
vk::CreateSampler(m_device->device(), &sampler_info, NULL, &sampler);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, MirrorClampToEdgeNotEnabled12) {
TEST_DESCRIPTION("Validation using CLAMP_TO_EDGE for Vulkan 1.2 without the samplerMirrorClampToEdge feature enabled.");
SetTargetApiVersion(VK_API_VERSION_1_2);
ASSERT_NO_FATAL_FAILURE(Init());
if (DeviceValidationVersion() < VK_API_VERSION_1_2) {
printf("%s Tests requires Vulkan 1.2+, skipping test\n", kSkipPrefix);
return;
}
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkSamplerCreateInfo-addressModeU-01079");
VkSampler sampler = VK_NULL_HANDLE;
VkSamplerCreateInfo sampler_info = SafeSaneSamplerCreateInfo();
sampler_info.addressModeU = VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE;
vk::CreateSampler(m_device->device(), &sampler_info, NULL, &sampler);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, AnisotropyFeatureDisabled) {
TEST_DESCRIPTION("Validation should check anisotropy parameters are correct with samplerAnisotropy disabled.");
// Determine if required device features are available
VkPhysicalDeviceFeatures device_features = {};
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(GetPhysicalDeviceFeatures(&device_features));
device_features.samplerAnisotropy = VK_FALSE; // force anisotropy off
ASSERT_NO_FATAL_FAILURE(InitState(&device_features));
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkSamplerCreateInfo-anisotropyEnable-01070");
VkSamplerCreateInfo sampler_info = SafeSaneSamplerCreateInfo();
// With the samplerAnisotropy disable, the sampler must not enable it.
sampler_info.anisotropyEnable = VK_TRUE;
VkSampler sampler = VK_NULL_HANDLE;
VkResult err;
err = vk::CreateSampler(m_device->device(), &sampler_info, NULL, &sampler);
m_errorMonitor->VerifyFound();
if (VK_SUCCESS == err) {
vk::DestroySampler(m_device->device(), sampler, NULL);
}
sampler = VK_NULL_HANDLE;
}
TEST_F(VkLayerTest, AnisotropyFeatureEnabled) {
TEST_DESCRIPTION("Validation must check several conditions that apply only when Anisotropy is enabled.");
// Determine if required device features are available
AddRequiredExtensions(VK_IMG_FILTER_CUBIC_EXTENSION_NAME);
VkPhysicalDeviceFeatures device_features = {};
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(GetPhysicalDeviceFeatures(&device_features));
// These tests require that the device support anisotropic filtering
if (VK_TRUE != device_features.samplerAnisotropy) {
printf("%s Test requires unsupported samplerAnisotropy feature. Skipped.\n", kSkipPrefix);
return;
}
const bool cubic_support = CanEnableDeviceExtension(VK_IMG_FILTER_CUBIC_EXTENSION_NAME);
VkSamplerCreateInfo sampler_info_ref = SafeSaneSamplerCreateInfo();
sampler_info_ref.anisotropyEnable = VK_TRUE;
VkSamplerCreateInfo sampler_info = sampler_info_ref;
ASSERT_NO_FATAL_FAILURE(InitState());
// maxAnisotropy out-of-bounds low.
sampler_info.maxAnisotropy = NearestSmaller(1.0F);
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-anisotropyEnable-01071");
sampler_info.maxAnisotropy = sampler_info_ref.maxAnisotropy;
// maxAnisotropy out-of-bounds high.
sampler_info.maxAnisotropy = NearestGreater(m_device->phy().properties().limits.maxSamplerAnisotropy);
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-anisotropyEnable-01071");
sampler_info.maxAnisotropy = sampler_info_ref.maxAnisotropy;
// Both anisotropy and unnormalized coords enabled
sampler_info.unnormalizedCoordinates = VK_TRUE;
// If unnormalizedCoordinates is VK_TRUE, minLod and maxLod must be zero
sampler_info.minLod = 0;
sampler_info.maxLod = 0;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01076");
sampler_info.unnormalizedCoordinates = sampler_info_ref.unnormalizedCoordinates;
// Both anisotropy and cubic filtering enabled
if (cubic_support) {
sampler_info.minFilter = VK_FILTER_CUBIC_IMG;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-magFilter-01081");
sampler_info.minFilter = sampler_info_ref.minFilter;
sampler_info.magFilter = VK_FILTER_CUBIC_IMG;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-magFilter-01081");
sampler_info.magFilter = sampler_info_ref.magFilter;
} else {
printf("%s Test requires unsupported extension \"VK_IMG_filter_cubic\". Skipped.\n", kSkipPrefix);
}
}
TEST_F(VkLayerTest, UnnormalizedCoordinatesEnabled) {
TEST_DESCRIPTION("Validate restrictions on sampler parameters when unnormalizedCoordinates is true.");
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
VkSamplerCreateInfo sampler_info_ref = SafeSaneSamplerCreateInfo();
sampler_info_ref.unnormalizedCoordinates = VK_TRUE;
sampler_info_ref.minLod = 0.0f;
sampler_info_ref.maxLod = 0.0f;
VkSamplerCreateInfo sampler_info = sampler_info_ref;
ASSERT_NO_FATAL_FAILURE(InitState());
// min and mag filters must be the same
sampler_info.minFilter = VK_FILTER_NEAREST;
sampler_info.magFilter = VK_FILTER_LINEAR;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01072");
std::swap(sampler_info.minFilter, sampler_info.magFilter);
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01072");
sampler_info = sampler_info_ref;
// mipmapMode must be NEAREST
sampler_info.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01073");
sampler_info = sampler_info_ref;
// minlod and maxlod must be zero
sampler_info.maxLod = 3.14159f;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01074");
sampler_info.minLod = 2.71828f;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01074");
sampler_info = sampler_info_ref;
// addressModeU and addressModeV must both be CLAMP_TO_EDGE or CLAMP_TO_BORDER
// checks all 12 invalid combinations out of 16 total combinations
const std::array<VkSamplerAddressMode, 4> kAddressModes = {{
VK_SAMPLER_ADDRESS_MODE_REPEAT,
VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT,
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE,
VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER,
}};
for (const auto umode : kAddressModes) {
for (const auto vmode : kAddressModes) {
if ((umode != VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE && umode != VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER) ||
(vmode != VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE && vmode != VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER)) {
sampler_info.addressModeU = umode;
sampler_info.addressModeV = vmode;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01075");
}
}
}
sampler_info = sampler_info_ref;
// VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01076 is tested in AnisotropyFeatureEnabled above
// Since it requires checking/enabling the anisotropic filtering feature, it's easier to do it
// with the other anisotropic tests.
// compareEnable must be VK_FALSE
sampler_info.compareEnable = VK_TRUE;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-unnormalizedCoordinates-01077");
sampler_info = sampler_info_ref;
}
TEST_F(VkLayerTest, InvalidSamplerCreateInfo) {
TEST_DESCRIPTION("Checks various cases where VkSamplerCreateInfo is invalid");
ASSERT_NO_FATAL_FAILURE(Init());
// reference to reset values between test cases
VkSamplerCreateInfo const sampler_info_ref = SafeSaneSamplerCreateInfo();
VkSamplerCreateInfo sampler_info = sampler_info_ref;
// Mix up Lod values
sampler_info.minLod = 4.0f;
sampler_info.maxLod = 1.0f;
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-maxLod-01973");
sampler_info.minLod = sampler_info_ref.minLod;
sampler_info.maxLod = sampler_info_ref.maxLod;
// Larger mipLodBias than max limit
sampler_info.mipLodBias = NearestGreater(m_device->phy().properties().limits.maxSamplerLodBias);
CreateSamplerTest(*this, &sampler_info, "VUID-VkSamplerCreateInfo-mipLodBias-01069");
sampler_info.mipLodBias = sampler_info_ref.mipLodBias;
}
TEST_F(VkLayerTest, UpdateBufferAlignment) {
TEST_DESCRIPTION("Check alignment parameters for vkCmdUpdateBuffer");
uint32_t updateData[] = {1, 2, 3, 4, 5, 6, 7, 8};
ASSERT_NO_FATAL_FAILURE(Init());
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
VkBufferObj buffer;
buffer.init_as_dst(*m_device, (VkDeviceSize)20, reqs);
m_commandBuffer->begin();
// Introduce failure by using dstOffset that is not multiple of 4
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, " is not a multiple of 4");
m_commandBuffer->UpdateBuffer(buffer.handle(), 1, 4, updateData);
m_errorMonitor->VerifyFound();
// Introduce failure by using dataSize that is not multiple of 4
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, " is not a multiple of 4");
m_commandBuffer->UpdateBuffer(buffer.handle(), 0, 6, updateData);
m_errorMonitor->VerifyFound();
// Introduce failure by using dataSize that is < 0
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "must be greater than zero and less than or equal to 65536");
m_commandBuffer->UpdateBuffer(buffer.handle(), 0, (VkDeviceSize)-44, updateData);
m_errorMonitor->VerifyFound();
// Introduce failure by using dataSize that is > 65536
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "must be greater than zero and less than or equal to 65536");
m_commandBuffer->UpdateBuffer(buffer.handle(), 0, (VkDeviceSize)80000, updateData);
m_errorMonitor->VerifyFound();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, FillBufferAlignmentAndSize) {
TEST_DESCRIPTION("Check alignment and size parameters for vkCmdFillBuffer");
ASSERT_NO_FATAL_FAILURE(Init());
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
VkBufferObj buffer;
buffer.init_as_dst(*m_device, (VkDeviceSize)20, reqs);
m_commandBuffer->begin();
// Introduce failure by using dstOffset greater than bufferSize
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-vkCmdFillBuffer-dstOffset-00024");
m_commandBuffer->FillBuffer(buffer.handle(), 40, 4, 0x11111111);
m_errorMonitor->VerifyFound();
// Introduce failure by using size <= buffersize minus dstoffset
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-vkCmdFillBuffer-size-00027");
m_commandBuffer->FillBuffer(buffer.handle(), 16, 12, 0x11111111);
m_errorMonitor->VerifyFound();
// Introduce failure by using dstOffset that is not multiple of 4
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, " is not a multiple of 4");
m_commandBuffer->FillBuffer(buffer.handle(), 1, 4, 0x11111111);
m_errorMonitor->VerifyFound();
// Introduce failure by using size that is not multiple of 4
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, " is not a multiple of 4");
m_commandBuffer->FillBuffer(buffer.handle(), 0, 6, 0x11111111);
m_errorMonitor->VerifyFound();
// Introduce failure by using size that is zero
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "must be greater than zero");
m_commandBuffer->FillBuffer(buffer.handle(), 0, 0, 0x11111111);
m_errorMonitor->VerifyFound();
m_commandBuffer->end();
}
TEST_F(VkLayerTest, SparseBindingImageBufferCreate) {
TEST_DESCRIPTION("Create buffer/image with sparse attributes but without the sparse_binding bit set");
ASSERT_NO_FATAL_FAILURE(Init());
VkBufferCreateInfo buf_info = LvlInitStruct<VkBufferCreateInfo>();
buf_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
buf_info.size = 2048;
buf_info.queueFamilyIndexCount = 0;
buf_info.pQueueFamilyIndices = NULL;
buf_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
if (m_device->phy().features().sparseResidencyBuffer) {
buf_info.flags = VK_BUFFER_CREATE_SPARSE_RESIDENCY_BIT;
CreateBufferTest(*this, &buf_info, "VUID-VkBufferCreateInfo-flags-00918");
} else {
printf("%s Test requires unsupported sparseResidencyBuffer feature. Skipped.\n", kSkipPrefix);
return;
}
if (m_device->phy().features().sparseResidencyAliased) {
buf_info.flags = VK_BUFFER_CREATE_SPARSE_ALIASED_BIT;
CreateBufferTest(*this, &buf_info, "VUID-VkBufferCreateInfo-flags-00918");
} else {
printf("%s Test requires unsupported sparseResidencyAliased feature. Skipped.\n", kSkipPrefix);
return;
}
VkImageCreateInfo image_create_info = LvlInitStruct<VkImageCreateInfo>();
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image_create_info.extent.width = 512;
image_create_info.extent.height = 64;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image_create_info.queueFamilyIndexCount = 0;
image_create_info.pQueueFamilyIndices = NULL;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
if (m_device->phy().features().sparseResidencyImage2D) {
image_create_info.flags = VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-flags-00987");
} else {
printf("%s Test requires unsupported sparseResidencyImage2D feature. Skipped.\n", kSkipPrefix);
return;
}
if (m_device->phy().features().sparseResidencyAliased) {
image_create_info.flags = VK_IMAGE_CREATE_SPARSE_ALIASED_BIT;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-flags-00987");
} else {
printf("%s Test requires unsupported sparseResidencyAliased feature. Skipped.\n", kSkipPrefix);
return;
}
}
TEST_F(VkLayerTest, SparseResidencyImageCreateUnsupportedTypes) {
TEST_DESCRIPTION("Create images with sparse residency with unsupported types");
// Determine which device feature are available
VkPhysicalDeviceFeatures device_features = {};
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(GetPhysicalDeviceFeatures(&device_features));
// Mask out device features we don't want and initialize device state
device_features.sparseResidencyImage2D = VK_FALSE;
device_features.sparseResidencyImage3D = VK_FALSE;
ASSERT_NO_FATAL_FAILURE(InitState(&device_features));
if (!m_device->phy().features().sparseBinding) {
printf("%s Test requires unsupported sparseBinding feature. Skipped.\n", kSkipPrefix);
return;
}
VkImageCreateInfo image_create_info = LvlInitStruct<VkImageCreateInfo>();
image_create_info.imageType = VK_IMAGE_TYPE_1D;
image_create_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image_create_info.extent.width = 512;
image_create_info.extent.height = 1;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image_create_info.queueFamilyIndexCount = 0;
image_create_info.pQueueFamilyIndices = NULL;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_create_info.flags = VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | VK_BUFFER_CREATE_SPARSE_BINDING_BIT;
// 1D image w/ sparse residency is an error
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-imageType-00970");
// 2D image w/ sparse residency when feature isn't available
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.extent.height = 64;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-imageType-00971");
// 3D image w/ sparse residency when feature isn't available
image_create_info.imageType = VK_IMAGE_TYPE_3D;
image_create_info.extent.depth = 8;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-imageType-00972");
}
TEST_F(VkLayerTest, SparseResidencyImageCreateUnsupportedSamples) {
TEST_DESCRIPTION("Create images with sparse residency with unsupported tiling or sample counts");
// Determine which device feature are available
VkPhysicalDeviceFeatures device_features = {};
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(GetPhysicalDeviceFeatures(&device_features));
// These tests require that the device support sparse residency for 2D images
if (VK_TRUE != device_features.sparseResidencyImage2D) {
printf("%s Test requires unsupported SparseResidencyImage2D feature. Skipped.\n", kSkipPrefix);
return;
}
// Mask out device features we don't want and initialize device state
device_features.sparseResidency2Samples = VK_FALSE;
device_features.sparseResidency4Samples = VK_FALSE;
device_features.sparseResidency8Samples = VK_FALSE;
device_features.sparseResidency16Samples = VK_FALSE;
ASSERT_NO_FATAL_FAILURE(InitState(&device_features));
VkImageCreateInfo image_create_info = LvlInitStruct<VkImageCreateInfo>();
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image_create_info.extent.width = 64;
image_create_info.extent.height = 64;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_LINEAR;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image_create_info.queueFamilyIndexCount = 0;
image_create_info.pQueueFamilyIndices = NULL;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_create_info.flags = VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | VK_BUFFER_CREATE_SPARSE_BINDING_BIT;
// 2D image w/ sparse residency and linear tiling is an error
CreateImageTest(*this, &image_create_info,
"VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT then image tiling of VK_IMAGE_TILING_LINEAR is not supported");
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
// Multi-sample image w/ sparse residency when feature isn't available (4 flavors)
image_create_info.samples = VK_SAMPLE_COUNT_2_BIT;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-imageType-00973");
image_create_info.samples = VK_SAMPLE_COUNT_4_BIT;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-imageType-00974");
image_create_info.samples = VK_SAMPLE_COUNT_8_BIT;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-imageType-00975");
image_create_info.samples = VK_SAMPLE_COUNT_16_BIT;
CreateImageTest(*this, &image_create_info, "VUID-VkImageCreateInfo-imageType-00976");
}
TEST_F(VkLayerTest, SparseResidencyFlagMissing) {
TEST_DESCRIPTION("Try to use VkSparseImageMemoryBindInfo without sparse residency flag");
ASSERT_NO_FATAL_FAILURE(Init());
if (!m_device->phy().features().sparseResidencyImage2D) {
printf("%s Test requires unsupported sparseResidencyImage2D feature. Skipped.\n", kSkipPrefix);
return;
}
VkImageCreateInfo image_create_info = LvlInitStruct<VkImageCreateInfo>();
image_create_info.flags = VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image_create_info.extent.width = 512;
image_create_info.extent.height = 64;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image_create_info.queueFamilyIndexCount = 0;
image_create_info.pQueueFamilyIndices = NULL;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VkImageObj image(m_device);
image.init_no_mem(*m_device, image_create_info);
VkSparseImageMemoryBind image_memory_bind = {};
image_memory_bind.subresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
VkSparseImageMemoryBindInfo image_memory_bind_info = {};
image_memory_bind_info.image = image.handle();
image_memory_bind_info.bindCount = 1;
image_memory_bind_info.pBinds = &image_memory_bind;
VkBindSparseInfo bind_info = LvlInitStruct<VkBindSparseInfo>();
bind_info.imageBindCount = 1;
bind_info.pImageBinds = &image_memory_bind_info;
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkSparseImageMemoryBindInfo-image-02901");
vk::QueueBindSparse(m_device->m_queue, 1, &bind_info, VK_NULL_HANDLE);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, InvalidMemoryMapping) {
TEST_DESCRIPTION("Attempt to map memory in a number of incorrect ways");
VkResult err;
bool pass;
ASSERT_NO_FATAL_FAILURE(Init());
VkBuffer buffer;
VkDeviceMemory mem;
VkMemoryRequirements mem_reqs;
const VkDeviceSize atom_size = m_device->props.limits.nonCoherentAtomSize;
VkBufferCreateInfo buf_info = LvlInitStruct<VkBufferCreateInfo>();
buf_info.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
buf_info.size = 256;
buf_info.queueFamilyIndexCount = 0;
buf_info.pQueueFamilyIndices = NULL;
buf_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
buf_info.flags = 0;
err = vk::CreateBuffer(m_device->device(), &buf_info, NULL, &buffer);
ASSERT_VK_SUCCESS(err);
vk::GetBufferMemoryRequirements(m_device->device(), buffer, &mem_reqs);
VkMemoryAllocateInfo alloc_info = LvlInitStruct<VkMemoryAllocateInfo>();
alloc_info.memoryTypeIndex = 0;
// Ensure memory is big enough for both bindings
// Want to make sure entire allocation is aligned to atom size
static const VkDeviceSize allocation_size = atom_size * 64;
alloc_info.allocationSize = allocation_size;
pass = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &alloc_info, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
if (!pass) {
printf("%s Failed to set memory type.\n", kSkipPrefix);
vk::DestroyBuffer(m_device->device(), buffer, NULL);
return;
}
err = vk::AllocateMemory(m_device->device(), &alloc_info, NULL, &mem);
ASSERT_VK_SUCCESS(err);
uint8_t *pData;
// Attempt to map memory size 0 is invalid
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-vkMapMemory-size-00680");
err = vk::MapMemory(m_device->device(), mem, 0, 0, 0, (void **)&pData);
m_errorMonitor->VerifyFound();
// Map memory twice
err = vk::MapMemory(m_device->device(), mem, 0, mem_reqs.size, 0, (void **)&pData);
ASSERT_VK_SUCCESS(err);
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-vkMapMemory-memory-00678");
m_errorMonitor->SetUnexpectedError("VUID-vkMapMemory-size-00681");
err = vk::MapMemory(m_device->device(), mem, 0, mem_reqs.size, 0, (void **)&pData);
m_errorMonitor->VerifyFound();
// Unmap the memory to avoid re-map error
vk::UnmapMemory(m_device->device(), mem);
// overstep offset with VK_WHOLE_SIZE
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-vkMapMemory-offset-00679");
err = vk::MapMemory(m_device->device(), mem, allocation_size + 1, VK_WHOLE_SIZE, 0, (void **)&pData);
m_errorMonitor->VerifyFound();
// overstep offset w/o VK_WHOLE_SIZE
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-vkMapMemory-offset-00679");
err = vk::MapMemory(m_device->device(), mem, allocation_size + 1, VK_WHOLE_SIZE, 0, (void **)&pData);
m_errorMonitor->VerifyFound();
// overstep allocation w/o VK_WHOLE_SIZE
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-vkMapMemory-size-00681");
err = vk::MapMemory(m_device->device(), mem, 1, allocation_size, 0, (void **)&pData);
m_errorMonitor->VerifyFound();
// Now error due to unmapping memory that's not mapped
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-vkUnmapMemory-memory-00689");
vk::UnmapMemory(m_device->device(), mem);
m_errorMonitor->VerifyFound();
// Now map memory and cause errors due to flushing invalid ranges
err = vk::MapMemory(m_device->device(), mem, 4 * atom_size, VK_WHOLE_SIZE, 0, (void **)&pData);
ASSERT_VK_SUCCESS(err);
VkMappedMemoryRange mmr = LvlInitStruct<VkMappedMemoryRange>();
mmr.memory = mem;
mmr.offset = atom_size; // Error b/c offset less than offset of mapped mem
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkMappedMemoryRange-size-00685");
vk::FlushMappedMemoryRanges(m_device->device(), 1, &mmr);
m_errorMonitor->VerifyFound();
// Now flush range that oversteps mapped range
vk::UnmapMemory(m_device->device(), mem);
err = vk::MapMemory(m_device->device(), mem, 0, 4 * atom_size, 0, (void **)&pData);
ASSERT_VK_SUCCESS(err);
mmr.offset = atom_size;
mmr.size = 4 * atom_size; // Flushing bounds exceed mapped bounds
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkMappedMemoryRange-size-00685");
vk::FlushMappedMemoryRanges(m_device->device(), 1, &mmr);
m_errorMonitor->VerifyFound();
// Now flush range with VK_WHOLE_SIZE that oversteps offset
vk::UnmapMemory(m_device->device(), mem);
err = vk::MapMemory(m_device->device(), mem, 2 * atom_size, 4 * atom_size, 0, (void **)&pData);
ASSERT_VK_SUCCESS(err);
mmr.offset = atom_size;
mmr.size = VK_WHOLE_SIZE;
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkMappedMemoryRange-size-00686");
vk::FlushMappedMemoryRanges(m_device->device(), 1, &mmr);
m_errorMonitor->VerifyFound();
// Some platforms have an atomsize of 1 which makes the test meaningless
if (atom_size > 3) {
// Now with an offset NOT a multiple of the device limit
vk::UnmapMemory(m_device->device(), mem);
err = vk::MapMemory(m_device->device(), mem, 0, 4 * atom_size, 0, (void **)&pData);
ASSERT_VK_SUCCESS(err);
mmr.offset = 3; // Not a multiple of atom_size
mmr.size = VK_WHOLE_SIZE;
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkMappedMemoryRange-offset-00687");
vk::FlushMappedMemoryRanges(m_device->device(), 1, &mmr);
m_errorMonitor->VerifyFound();
// Now with a size NOT a multiple of the device limit
vk::UnmapMemory(m_device->device(), mem);
err = vk::MapMemory(m_device->device(), mem, 0, 4 * atom_size, 0, (void **)&pData);
ASSERT_VK_SUCCESS(err);
mmr.offset = atom_size;
mmr.size = 2 * atom_size + 1; // Not a multiple of atom_size
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkMappedMemoryRange-size-01390");
vk::FlushMappedMemoryRanges(m_device->device(), 1, &mmr);
m_errorMonitor->VerifyFound();
// Now with VK_WHOLE_SIZE and a mapping that does not end at a multiple of atom_size nor at the end of the memory.
vk::UnmapMemory(m_device->device(), mem);
err = vk::MapMemory(m_device->device(), mem, 0, 4 * atom_size + 1, 0, (void **)&pData);
ASSERT_VK_SUCCESS(err);
mmr.offset = atom_size;
mmr.size = VK_WHOLE_SIZE;
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkMappedMemoryRange-size-01389");
vk::FlushMappedMemoryRanges(m_device->device(), 1, &mmr);
m_errorMonitor->VerifyFound();
}
// Try flushing and invalidating host memory not mapped
vk::UnmapMemory(m_device->device(), mem);
mmr.offset = 0;
mmr.size = VK_WHOLE_SIZE;
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkMappedMemoryRange-memory-00684");
vk::FlushMappedMemoryRanges(m_device->device(), 1, &mmr);
m_errorMonitor->VerifyFound();
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkMappedMemoryRange-memory-00684");
vk::InvalidateMappedMemoryRanges(m_device->device(), 1, &mmr);
m_errorMonitor->VerifyFound();
vk::DestroyBuffer(m_device->device(), buffer, NULL);
vk::FreeMemory(m_device->device(), mem, NULL);
// device memory not atom size aligned
alloc_info.allocationSize = (atom_size * 4) + 1;
ASSERT_VK_SUCCESS(vk::CreateBuffer(m_device->device(), &buf_info, NULL, &buffer));
pass = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &alloc_info, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
if (!pass) {
printf("%s Failed to set memory type.\n", kSkipPrefix);
vk::DestroyBuffer(m_device->device(), buffer, NULL);
return;
}
ASSERT_VK_SUCCESS(vk::AllocateMemory(m_device->device(), &alloc_info, NULL, &mem));
ASSERT_VK_SUCCESS(vk::MapMemory(m_device->device(), mem, 0, VK_WHOLE_SIZE, 0, (void **)&pData));
// Some platforms have an atomsize of 1 which makes the test meaningless
if (atom_size > 1) {
// Offset is atom size, but total memory range is not atom size
mmr.memory = mem;
mmr.offset = atom_size;
mmr.size = VK_WHOLE_SIZE;
m_errorMonitor->ExpectSuccess();
vk::FlushMappedMemoryRanges(m_device->device(), 1, &mmr);
m_errorMonitor->VerifyNotFound();
}
pass = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &alloc_info, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
if (!pass) {
printf("%s Failed to set memory type.\n", kSkipPrefix);
vk::FreeMemory(m_device->device(), mem, NULL);
vk::DestroyBuffer(m_device->device(), buffer, NULL);
return;
}
// TODO : If we can get HOST_VISIBLE w/o HOST_COHERENT we can test cases of
// kVUID_Core_MemTrack_InvalidMap in validateAndCopyNoncoherentMemoryToDriver()
vk::DestroyBuffer(m_device->device(), buffer, NULL);
vk::FreeMemory(m_device->device(), mem, NULL);
}
TEST_F(VkLayerTest, MapMemWithoutHostVisibleBit) {
TEST_DESCRIPTION("Allocate memory that is not mappable and then attempt to map it.");
VkResult err;
bool pass;
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-vkMapMemory-memory-00682");
m_errorMonitor->SetUnexpectedError("VUID-vkMapMemory-memory-00683");
ASSERT_NO_FATAL_FAILURE(Init());
VkMemoryAllocateInfo mem_alloc = LvlInitStruct<VkMemoryAllocateInfo>();
mem_alloc.allocationSize = 1024;
pass = m_device->phy().set_memory_type(0xFFFFFFFF, &mem_alloc, 0, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
if (!pass) { // If we can't find any unmappable memory this test doesn't
// make sense
printf("%s No unmappable memory types found, skipping test\n", kSkipPrefix);
return;
}
VkDeviceMemory mem;
err = vk::AllocateMemory(m_device->device(), &mem_alloc, NULL, &mem);
ASSERT_VK_SUCCESS(err);
void *mappedAddress = NULL;
err = vk::MapMemory(m_device->device(), mem, 0, VK_WHOLE_SIZE, 0, &mappedAddress);
m_errorMonitor->VerifyFound();
// Attempt to flush and invalidate non-host memory
VkMappedMemoryRange memory_range = LvlInitStruct<VkMappedMemoryRange>();
memory_range.memory = mem;
memory_range.offset = 0;
memory_range.size = VK_WHOLE_SIZE;
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkMappedMemoryRange-memory-00684");
vk::FlushMappedMemoryRanges(m_device->device(), 1, &memory_range);
m_errorMonitor->VerifyFound();
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkMappedMemoryRange-memory-00684");
vk::InvalidateMappedMemoryRanges(m_device->device(), 1, &memory_range);
m_errorMonitor->VerifyFound();
vk::FreeMemory(m_device->device(), mem, NULL);
}
TEST_F(VkLayerTest, RebindMemory_MultiObjectDebugUtils) {
VkResult err;
bool pass;
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-vkBindImageMemory-image-01044");
ASSERT_NO_FATAL_FAILURE(Init());
// Create an image, allocate memory, free it, and then try to bind it
VkImage image;
VkDeviceMemory mem1;
VkDeviceMemory mem2;
VkMemoryRequirements mem_reqs;
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
const int32_t tex_width = 32;
const int32_t tex_height = 32;
VkImageCreateInfo image_create_info = LvlInitStruct<VkImageCreateInfo>();
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = tex_format;
image_create_info.extent.width = tex_width;
image_create_info.extent.height = tex_height;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
image_create_info.flags = 0;
VkMemoryAllocateInfo mem_alloc = LvlInitStruct<VkMemoryAllocateInfo>();
mem_alloc.allocationSize = 0;
mem_alloc.memoryTypeIndex = 0;
// Introduce failure, do NOT set memProps to
// VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
mem_alloc.memoryTypeIndex = 1;
err = vk::CreateImage(m_device->device(), &image_create_info, NULL, &image);
ASSERT_VK_SUCCESS(err);
vk::GetImageMemoryRequirements(m_device->device(), image, &mem_reqs);
mem_alloc.allocationSize = mem_reqs.size;
pass = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &mem_alloc, 0);
ASSERT_TRUE(pass);
// allocate 2 memory objects
err = vk::AllocateMemory(m_device->device(), &mem_alloc, NULL, &mem1);
ASSERT_VK_SUCCESS(err);
err = vk::AllocateMemory(m_device->device(), &mem_alloc, NULL, &mem2);
ASSERT_VK_SUCCESS(err);
// Bind first memory object to Image object
err = vk::BindImageMemory(m_device->device(), image, mem1, 0);
ASSERT_VK_SUCCESS(err);
// Introduce validation failure, try to bind a different memory object to
// the same image object
err = vk::BindImageMemory(m_device->device(), image, mem2, 0);
m_errorMonitor->VerifyFound();
// This particular VU should output three objects in its error message. Verify this works correctly.
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VK_OBJECT_TYPE_IMAGE");
err = vk::BindImageMemory(m_device->device(), image, mem2, 0);
m_errorMonitor->VerifyFound();
vk::DestroyImage(m_device->device(), image, NULL);
vk::FreeMemory(m_device->device(), mem1, NULL);
vk::FreeMemory(m_device->device(), mem2, NULL);
}
TEST_F(VkLayerTest, QueryMemoryCommitmentWithoutLazyProperty) {
TEST_DESCRIPTION("Attempt to query memory commitment on memory without lazy allocation");
ASSERT_NO_FATAL_FAILURE(Init());
auto image_ci = vk_testing::Image::create_info();
image_ci.imageType = VK_IMAGE_TYPE_2D;
image_ci.format = VK_FORMAT_B8G8R8A8_UNORM;
image_ci.extent.width = 32;
image_ci.extent.height = 32;
image_ci.tiling = VK_IMAGE_TILING_OPTIMAL;
image_ci.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
VkImageObj image(m_device);
image.init_no_mem(*m_device, image_ci);
auto mem_reqs = image.memory_requirements();
// memory_type_index is set to 0 here, but is set properly below
auto image_alloc_info = vk_testing::DeviceMemory::alloc_info(mem_reqs.size, 0);
bool pass;
// the last argument is the "forbid" argument for set_memory_type, disallowing
// that particular memory type rather than requiring it
pass = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &image_alloc_info, 0, VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT);
if (!pass) {
printf("%s Failed to set memory type.\n", kSkipPrefix);
return;
}
vk_testing::DeviceMemory mem;
mem.init(*m_device, image_alloc_info);
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-vkGetDeviceMemoryCommitment-memory-00690");
VkDeviceSize size;
vk::GetDeviceMemoryCommitment(m_device->device(), mem.handle(), &size);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, InvalidSparseImageUsageBits) {
TEST_DESCRIPTION("Try to use VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT with sparse image");
ASSERT_NO_FATAL_FAILURE(Init());
VkPhysicalDeviceFeatures device_features = {};
ASSERT_NO_FATAL_FAILURE(GetPhysicalDeviceFeatures(&device_features));
if (!device_features.sparseBinding) {
printf("%s No sparseBinding feature. Skipped.\n", kSkipPrefix);
return;
}
auto image_create_info = LvlInitStruct<VkImageCreateInfo>();
image_create_info.flags = VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image_create_info.extent.width = 32;
image_create_info.extent.height = 32;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED;
image_create_info.usage = VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
image_create_info.queueFamilyIndexCount = 0;
image_create_info.pQueueFamilyIndices = NULL;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
VkImageObj image(m_device);
m_errorMonitor->SetDesiredFailureMsg(kErrorBit, "VUID-VkImageCreateInfo-None-01925");
VkImage img = image.image();
vk::CreateImage(m_device->device(), &image_create_info, nullptr, &img);
m_errorMonitor->VerifyFound();
}
TEST_F(VkLayerTest, InvalidUsageBits) {
TEST_DESCRIPTION(
"Specify wrong usage for image then create conflicting view of image Initialize buffer with wrong usage then perform copy "
"expecting errors from both the image and the buffer (2 calls)");