-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimclr.py
151 lines (112 loc) · 5.05 KB
/
simclr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
from models.resnet_simclr import ResNetSimCLR
from torch.utils.tensorboard import SummaryWriter
import torch.nn.functional as F
from loss.nt_xent import NTXentLoss
import os
import shutil
import sys
apex_support = False
try:
sys.path.append('./apex')
from apex import amp
apex_support = True
except:
print("Please install apex for mixed precision training from: https://github.com/NVIDIA/apex")
apex_support = False
import numpy as np
torch.manual_seed(0)
def _save_config_file(model_checkpoints_folder):
if not os.path.exists(model_checkpoints_folder):
os.makedirs(model_checkpoints_folder)
shutil.copy('./config.yaml', os.path.join(model_checkpoints_folder, 'config.yaml'))
class SimCLR(object):
def __init__(self, dataset, config):
self.config = config
self.device = self._get_device()
self.writer = SummaryWriter()
self.dataset = dataset
self.nt_xent_criterion = NTXentLoss(self.device, config['batch_size'], **config['loss'])
def _get_device(self):
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Running on:", device)
return device
def _step(self, model, xis, xjs, n_iter):
# get the representations and the projections
ris, zis = model(xis) # [N,C]
# get the representations and the projections
rjs, zjs = model(xjs) # [N,C]
# normalize projection feature vectors
zis = F.normalize(zis, dim=1)
zjs = F.normalize(zjs, dim=1)
loss = self.nt_xent_criterion(zis, zjs)
return loss
def train(self):
train_loader, valid_loader = self.dataset.get_data_loaders()
model = ResNetSimCLR(**self.config["model"]).to(self.device)
model = self._load_pre_trained_weights(model)
optimizer = torch.optim.Adam(model.parameters(), 3e-4, weight_decay=eval(self.config['weight_decay']))
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=len(train_loader), eta_min=0,
last_epoch=-1)
if apex_support and self.config['fp16_precision']:
model, optimizer = amp.initialize(model, optimizer,
opt_level='O2',
keep_batchnorm_fp32=True)
model_checkpoints_folder = os.path.join(self.writer.log_dir, 'checkpoints')
# save config file
_save_config_file(model_checkpoints_folder)
n_iter = 0
valid_n_iter = 0
best_valid_loss = np.inf
for epoch_counter in range(self.config['epochs']):
for (xis, xjs), _ in train_loader:
optimizer.zero_grad()
xis = xis.to(self.device)
xjs = xjs.to(self.device)
loss = self._step(model, xis, xjs, n_iter)
if n_iter % self.config['log_every_n_steps'] == 0:
self.writer.add_scalar('train_loss', loss, global_step=n_iter)
if apex_support and self.config['fp16_precision']:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
n_iter += 1
# validate the model if requested
if epoch_counter % self.config['eval_every_n_epochs'] == 0:
valid_loss = self._validate(model, valid_loader)
if valid_loss < best_valid_loss:
# save the model weights
best_valid_loss = valid_loss
torch.save(model.state_dict(), os.path.join(model_checkpoints_folder, 'model.pth'))
self.writer.add_scalar('validation_loss', valid_loss, global_step=valid_n_iter)
valid_n_iter += 1
# warmup for the first 10 epochs
if epoch_counter >= 10:
scheduler.step()
self.writer.add_scalar('cosine_lr_decay', scheduler.get_lr()[0], global_step=n_iter)
def _load_pre_trained_weights(self, model):
try:
checkpoints_folder = os.path.join('./runs', self.config['fine_tune_from'], 'checkpoints')
state_dict = torch.load(os.path.join(checkpoints_folder, 'model.pth'))
model.load_state_dict(state_dict)
print("Loaded pre-trained model with success.")
except FileNotFoundError:
print("Pre-trained weights not found. Training from scratch.")
return model
def _validate(self, model, valid_loader):
# validation steps
with torch.no_grad():
model.eval()
valid_loss = 0.0
counter = 0
for (xis, xjs), _ in valid_loader:
xis = xis.to(self.device)
xjs = xjs.to(self.device)
loss = self._step(model, xis, xjs, counter)
valid_loss += loss.item()
counter += 1
valid_loss /= counter
model.train()
return valid_loss