-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfootprinter.py
49 lines (31 loc) · 1.47 KB
/
footprinter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
# %%
import pandas as pd
from utils.run_opendc import runOpenDC
import matplotlib.pyplot as plt
from utils.plot_carbon_emission import plot_emissions
start_date = "2022-10-07"
end_date = "2022-10-14"
topology = "277"
workload_name = f"{start_date}_{end_date}"
# %%
# Replay an experiment using OpenDC and save the results to the output folder
runOpenDC(f"{start_date}_{end_date}", topology, "Output/")
# %%
# Import the workload to create absolute time to the results
df_trace = pd.read_parquet(f"Input/input_traces/{workload_name}/trace.parquet")
df_meta = pd.read_parquet(f"Input/input_traces/{workload_name}/meta.parquet")
df_energy = pd.read_parquet(f"Input/input_traces/{workload_name}/energy.parquet")
# %%
# Load the results
df_server = pd.read_parquet(f"Output/workload={workload_name}/topology={topology}/server.parquet")
df_host = pd.read_parquet(f"Output/workload={workload_name}/topology={topology}/host.parquet")
df_service = pd.read_parquet(f"Output/workload={workload_name}/topology={topology}/service.parquet")
# Add an absolute timestamp to the output based on the used workload
def add_absolute_timestamp(df, start_dt):
df["absolute_timestamp"] = start_dt + pd.to_timedelta(df["timestamp"], unit="ms")
add_absolute_timestamp(df_host, df_meta["start_time"].min())
add_absolute_timestamp(df_server, df_meta["start_time"].min())
add_absolute_timestamp(df_service, df_meta["start_time"].min())
# %%
# Plot the emissions
plot_emissions(df_host, start_date, end_date)