-
Notifications
You must be signed in to change notification settings - Fork 0
/
plotcm.py
36 lines (29 loc) · 1.02 KB
/
plotcm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import numpy as np
import matplotlib.pyplot as plt
from itertools import product
def plot_confusion_matrix(
cm, classes, normalize=False,
title='Confusion matrix', cmap=plt.cm.Blues):
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print('Normalized confusion matrix')
else:
print('Confusion matrix, without normalization')
plt.subplots(figsize=(10, 10))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2
for i, j in product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(
j, i, format(cm[i, j], fmt),
horizontalalignment='center',
color='white' if cm[i, j] > thresh else 'black'
)
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')