forked from Wuziyi616/CFUN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
backbone.py
164 lines (122 loc) · 4.92 KB
/
backbone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""
CFUN
Backbone nets architectures: Pseudo-3D Residual Networks (P3D Resnet, 2017)
A shallower implementation which only contains two stages.
"""
import torch.nn as nn
import math
def conv_S(in_planes, out_planes, stride=1, padding=1):
"""conv_S is the spatial conv layer"""
return nn.Conv3d(in_planes, out_planes, kernel_size=(1, 3, 3),
stride=stride, padding=padding)
def conv_T(in_planes, out_planes, stride=1, padding=1):
"""conv_T is the temporal conv layer"""
return nn.Conv3d(in_planes, out_planes, kernel_size=(3, 1, 1),
stride=stride, padding=padding)
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, block, expand=False, stride=1, ST_structure=('A', 'B', 'C')):
"""A wrapper for different Bottlenecks.
block: identify Block_A/B/C.
expand: whether to expand the final output channel by multiplying expansion.
"""
super(Bottleneck, self).__init__()
self.stride = stride
self.expand = expand
self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=1, stride=stride)
self.bn1 = nn.BatchNorm3d(planes)
self.ST = list(ST_structure)[(block - 1) % len(ST_structure)]
self.conv2 = conv_S(planes, planes, stride=1, padding=(0, 1, 1))
self.bn2 = nn.BatchNorm3d(planes)
self.conv3 = conv_T(planes, planes, stride=1, padding=(1, 0, 0))
self.bn3 = nn.BatchNorm3d(planes)
if expand:
self.conv4 = nn.Conv3d(planes, planes * 4, kernel_size=1)
self.bn4 = nn.BatchNorm3d(planes * 4)
self.downsample = nn.Sequential(
nn.Conv3d(inplanes, planes * 4, kernel_size=1, stride=2),
nn.BatchNorm3d(planes * 4)
)
else:
self.conv4 = nn.Conv3d(planes, inplanes, kernel_size=1)
self.bn4 = nn.BatchNorm3d(inplanes)
self.relu = nn.ReLU(inplace=True)
def ST_A(self, x):
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
return x
def ST_B(self, x):
tmp_x = self.conv2(x)
tmp_x = self.bn2(tmp_x)
tmp_x = self.relu(tmp_x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
return x + tmp_x
def ST_C(self, x):
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
tmp_x = self.conv3(x)
tmp_x = self.bn3(tmp_x)
tmp_x = self.relu(tmp_x)
return x + tmp_x
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
if self.ST == 'A':
out = self.ST_A(out)
elif self.ST == 'B':
out = self.ST_B(out)
elif self.ST == 'C':
out = self.ST_C(out)
out = self.conv4(out)
out = self.bn4(out)
if self.expand:
residual = self.downsample(residual)
out += residual
out = self.relu(out)
return out
class P3D(nn.Module):
def __init__(self, block, layers, input_channel=1, config=None):
super(P3D, self).__init__()
self.inplanes = config.BACKBONE_CHANNELS[0]
self.C1 = nn.Sequential(
nn.Conv3d(input_channel, config.BACKBONE_CHANNELS[0], kernel_size=(3, 7, 7), stride=2, padding=(1, 3, 3)),
nn.BatchNorm3d(config.BACKBONE_CHANNELS[0]),
nn.ReLU(inplace=True),
nn.MaxPool3d(kernel_size=2, stride=2)
) # size = 1 / 4, channel = config.BACKBONE_CHANNELS[0]
self.C2 = self._make_layer(block, config.BACKBONE_CHANNELS[0], layers[0], stride=2) # 1 / 8, [0] * 4
self.C3 = self._make_layer(block, config.BACKBONE_CHANNELS[1], layers[1], stride=2) # 1 / 16, [1] * 4
for m in self.modules():
if isinstance(m, nn.Conv3d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
layers = []
layers.append(block(self.inplanes, planes, 1, True, stride))
self.inplanes = planes * block.expansion
for i in range(2, blocks + 1):
layers.append(block(self.inplanes, planes, i, False))
return nn.Sequential(*layers)
def forward(self, x):
x = self.C1(x)
x = self.C2(x)
x = self.C3(x)
return x
def stages(self):
return [self.C1, self.C2, self.C3]
def P3D19(**kwargs):
"""Construct a P3D19 model."""
model = P3D(Bottleneck, [2, 3], **kwargs)
return model