-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-stn.py
76 lines (51 loc) · 2.26 KB
/
train-stn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import tensorflow as tf
import tensorflow.contrib.summary as summary
from tensorboard.plugins.beholder import Beholder
from stn import SpatialTransformerNetwork
from data_reader import DataReader
from utils import *
S_max = int(1e5)
batch_size = 100
lr = 1e-5
logs_path = "/localdata/auguste/logs_stn"
if __name__ == '__main__':
session_name = get_session_name()
session_logs_path = os.path.join(logs_path, session_name)
global_step = tf.train.get_or_create_global_step()
data_reader = DataReader(batch_size)
model = SpatialTransformerNetwork()
optimizer = tf.train.AdamOptimizer(learning_rate=lr)
beholder = Beholder(logs_path)
writer = summary.create_file_writer(session_logs_path, max_queue=1)
writer.set_as_default()
with summary.record_summaries_every_n_global_steps(50):
# Train
x, y = data_reader.read()
x_t, o = model(x)
loss = tf.losses.softmax_cross_entropy(y, o)
optimize = optimizer.minimize(loss, global_step=global_step)
acc, acc_op = tf.metrics.accuracy(tf.argmax(y, -1), tf.argmax(o, -1))
summary.scalar("loss", loss, family="train")
summary.scalar("accuracy", acc_op, family="train")
summary.image("image input", cast_im(x), max_images=3)
summary.image("image transformed", cast_im(x_t), max_images=3)
# Valid
x, y = data_reader.read("valid")
x_t, o = model(x)
loss = tf.losses.softmax_cross_entropy(y, o)
acc, acc_op = tf.metrics.accuracy(tf.argmax(y, -1), tf.argmax(o, -1))
summary.scalar("loss", loss, family="valid")
summary.scalar("accuracy", acc_op, family="valid")
summary.image("image input valid", cast_im(x), max_images=3)
summary.image("image transformed valid", cast_im(x_t), max_images=3)
with tf.Session() as sess:
tf.global_variables_initializer().run()
tf.local_variables_initializer().run()
summary.initialize(graph=tf.get_default_graph())
for s in range(S_max):
l, acc, *_ = sess.run(
[loss, acc_op, optimize, summary.all_summary_ops()])
beholder.update(session=sess)
if s % 50 == 0:
print("Iteration: {} Loss: {} Accuracy: {}".format(s, l, acc))