-
Notifications
You must be signed in to change notification settings - Fork 1
/
navigation_function.py
561 lines (453 loc) · 21.9 KB
/
navigation_function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
from keras.callbacks import EarlyStopping, ModelCheckpoint
from PIL import Image
import scipy.misc
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from keras.layers import Input, Dense, Lambda, Flatten, Reshape, Layer,Dropout
from keras.layers import Conv2D, Conv2DTranspose,MaxPooling2D
from keras.models import Model
from keras import backend as K
from keras import metrics
from keras.models import model_from_json
from numpy import linalg as LA
import math
import seaborn as sns
shrink=60
img_rows, img_cols, img_chns = shrink,shrink, 3
filters =32# number of convolutional filters to use
num_conv = 3
stri=1 #stride value of last con layer;set it none.
stri2=1
batch_size = 20
if K.image_data_format() == 'channels_first':
original_img_size = (img_chns, img_rows, img_cols)
else:
original_img_size = (img_rows, img_cols, img_chns)
latent_dim = 4
intermediate_dim = 256
epsilon_std = 1.0
# epochs = 500
x = Input(shape=original_img_size)
conv_1 = Conv2D(img_chns,
kernel_size=(2, 2),
kernel_initializer='random_uniform',
padding='same', activation='relu')(x)
conv_2 = Conv2D(filters,
kernel_size=(2, 2),
kernel_initializer='random_uniform',
padding='same', activation='relu',
strides=(2, 2))(conv_1)
# max_pool1 = MaxPooling2D(pool_size=(2, 2),strides=None, padding='valid', data_format=None)(conv_2)
conv_3 = Conv2D(filters,
kernel_size=num_conv,
kernel_initializer='random_uniform',
padding='same', activation='relu',
strides=(stri2, stri2))(conv_2)
# max_pool2 = MaxPooling2D(pool_size=(2, 2),strides=None, padding='valid', data_format=None)(conv_3)
conv_4 = Conv2D(filters,
kernel_size=num_conv,
kernel_initializer='random_uniform',
padding='same', activation='relu',
strides=(stri, stri))(conv_3)
# max_pool3 = MaxPooling2D(pool_size=(2, 2),strides=None, padding='valid', data_format=None)(conv_4)
flat = Flatten()(conv_4)
hidden = Dense(intermediate_dim, activation='relu')(flat)
h=Dropout(0.5)(hidden)
z_mean = Dense(latent_dim)(h)
z_log_var = Dense(latent_dim)(h)
def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim),
mean=0., stddev=epsilon_std)
return z_mean + K.exp(z_log_var) * epsilon
# note that "output_shape" isn't necessary with the TensorFlow backend
# so you could write `Lambda(sampling)([z_mean, z_log_var])`
z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var])
# we instantiate these layers separately so as to reuse them later
decoder_hid = Dense(intermediate_dim,input_shape=(latent_dim,), activation='relu')
# decoder_upsample = Dense(filters2 *( int(shrink/(stri*stri2*2))+0 )* (int(shrink/(stri*stri2*2)+0)), activation='relu')
decoder_upsample = Dense(filters * (shrink/2) * (shrink/2), activation='relu')
if K.image_data_format() == 'channels_first':
# output_shape = (batch_size, filters2,int( shrink/(stri*stri2*2))+0,int(shrink/(stri*stri2*2))+0)
output_shape = (batch_size, filters, (shrink/2),(shrink/2))
else:
# output_shape = (batch_size, int(shrink/(stri*stri2*2))+0, int(shrink/(stri*stri2*2))+0, filters2)
output_shape = (batch_size, (shrink/2), (shrink/2), filters)
decoder_reshape = Reshape(output_shape[1:])
decoder_deconv_1 = Conv2DTranspose(filters,
kernel_size=num_conv,
kernel_initializer='random_uniform',
padding='same',
strides=(stri, stri),
activation='relu')
decoder_deconv_2 = Conv2DTranspose(filters,
kernel_size=num_conv,
kernel_initializer='random_uniform',
padding='same',
strides=(stri2, stri2),
activation='relu')
if K.image_data_format() == 'channels_first':
output_shape = (batch_size, filters, 29, 29)
else:
output_shape = (batch_size, 29, 29, filters)
decoder_deconv_3_upsamp = Conv2DTranspose(filters,
kernel_size=(3, 3),
kernel_initializer='random_uniform',
strides=(2, 2),
padding='valid',
activation='relu')
decoder_mean_squash = Conv2D(img_chns,
kernel_size=2,
kernel_initializer='random_uniform',
padding='valid',
activation='sigmoid')
hid_decoded = decoder_hid(z)
up_decoded_=Dropout(0.5)(hid_decoded)
up_decoded = decoder_upsample(up_decoded_)
reshape_decoded = decoder_reshape(up_decoded)
deconv_1_decoded = decoder_deconv_1(reshape_decoded)
deconv_2_decoded = decoder_deconv_2(deconv_1_decoded)
x_decoded_relu = decoder_deconv_3_upsamp(deconv_2_decoded)
x_decoded_mean_squash = decoder_mean_squash(x_decoded_relu)
# Custom loss layer
class CustomVariationalLayer(Layer):
def __init__(self, **kwargs):
self.is_placeholder = True
super(CustomVariationalLayer, self).__init__(**kwargs)
def vae_loss(self, x, x_decoded_mean_squash):
x = K.flatten(x)
x_decoded_mean_squash = K.flatten(x_decoded_mean_squash)
xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash)
kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
return K.mean(xent_loss + kl_loss)
def call(self, inputs):
x = inputs[0]
x_decoded_mean_squash = inputs[1]
loss = self.vae_loss(x, x_decoded_mean_squash)
self.add_loss(loss, inputs=inputs)
# We don't use this output.
return x
y = CustomVariationalLayer()([x, x_decoded_mean_squash])
vae = Model(x, y)
vae.compile(optimizer='rmsprop', loss=None)
vae.summary()
vae.load_weights('vae_conv-4d.h5')
# build a model to project inputs on the latent space
encoder = Model(x, z_mean)
# build a digit generator that can sample from the learned distribution
decoder_input = Input(shape=(latent_dim,))
_hid_decoded = decoder_hid(decoder_input)
_up_decoded_=Dropout(0.5)(up_decoded)
_up_decoded = decoder_upsample(_hid_decoded)
_reshape_decoded = decoder_reshape(_up_decoded)
_deconv_1_decoded = decoder_deconv_1(_reshape_decoded)
_deconv_2_decoded = decoder_deconv_2(_deconv_1_decoded)
_x_decoded_relu = decoder_deconv_3_upsamp(_deconv_2_decoded)
_x_decoded_mean_squash = decoder_mean_squash(_x_decoded_relu)
generator = Model(decoder_input, _x_decoded_mean_squash)
decoder=generator
def vis():
n =15 # figure with 15x15 digits
digit_size = shrink
figure = np.zeros((digit_size * n, digit_size * n,3))
# linearly spaced coordinates on the unit square were transformed through the inverse CDF (ppf) of the Gaussian
# to produce values of the latent variables z, since the prior of the latent space is Gaussian
grid_x = norm.ppf(np.linspace(-1,1, n))
grid_y = norm.ppf(np.linspace(-1, 1, n))
for i, yi in enumerate(grid_x):
for j, xi in enumerate(grid_y):
z_sample = np.array([[xi, yi,1.5,5]])#under the asumption of 4 dimension latent space
z_sample = np.tile(z_sample, batch_size).reshape(batch_size, latent_dim)
x_decoded = generator.predict(z_sample, batch_size=batch_size)
digit = x_decoded[0].reshape(digit_size, digit_size,3)
figure[i * digit_size: (i + 1) * digit_size,
j * digit_size: (j + 1) * digit_size,:] = digit
plt.figure(figsize=(10, 10))
# plt.imshow(figure, cmap='Greys_r')
plt.imshow(figure)
plt.savefig('manifold-4d.png')
plt.show()
'''gradient descent method to update a path.'''
def get_decoded(xi):
#xi is the latent variable vector. 4 d in this case.
#results in a flat origianl image version.
z_sample = np.array([[xi]])
z_sample = np.tile(z_sample, batch_size).reshape(batch_size, latent_dim)
x_decoded = decoder.predict(z_sample, batch_size=batch_size)
digit = x_decoded[0].reshape(shrink * shrink * 3)
return digit
def get_decoded2(xi):
#xi is the latent variable vector. 4 d in this case.
#decoded in a matrix version
z_sample = np.array([[xi]])
z_sample = np.tile(z_sample, batch_size).reshape(batch_size, latent_dim)
x_decoded = decoder.predict(z_sample, batch_size=batch_size)
digit = x_decoded[0].reshape(shrink , shrink , 3)
return digit
def gd_points(points,num_p):
"apply the gradient deacent method to the series of poinits in the latent space, metrics in the genrated imgaes."
lb=[]
l=0
for i in range(num_p-1):
#calculate the length of the route.
l += LA.norm(get_decoded(points[i])-get_decoded(points[i+1]))
lb.append(l)
for iter in range(20):
print('iter',iter)
for j in range(num_p-2):
#Perform gradient descent
h=0.00001
lb_1 = LA.norm(get_decoded(points[j])-get_decoded(points[j+1]+h))+LA.norm(get_decoded(points[j+2])-get_decoded(points[j+1]+h))#evaluate function at x+h position
lb_2 = LA.norm(get_decoded(points[j])- get_decoded(points[j+1]-h)) + LA.norm(get_decoded(points[j+2]) - get_decoded(points[j+1]-h)) # evaluate function at x-h position
gradient=(lb_1 -lb_2)/(2*h)
s=0
for jj in range(num_p-1):
#calculate the length of the route.
s += LA.norm(get_decoded(points[jj])-get_decoded(points[jj+1]))
print(gradient)
# if LA.norm(get_decoded(points[j])-get_decoded(points[j+1]-0.0001 *gradient)) < s/(0.5*num_p and LA.norm(get_decoded(points[j+2])-get_decoded(points[j+1]-0.0001 *gradient))< s/num_p:
points[j+1] -= 0.0001 *gradient
l=0
for ii in range(num_p-1):
#calculate the length of the route.
l += LA.norm(get_decoded(points[ii])-get_decoded(points[ii+1]))
lb.append(l)
plt.plot(lb,'ro')
plt.savefig('gradients.png')
# plt.show()
return points
#the points updated by GD in the latent space, measured by the loss on generated images.
'''visualize a route from a path in the latent space.'''
def visualise_route(file,points,shrink,batch_size,num_p):
#file: is a string of the name of output image.
#visualise from the latent space points to 60*60 reality.
#fixed 50 images.
digit_size = shrink
figure = np.zeros((digit_size*num_p/10, digit_size*10,3))
j=0
POINTS=[]
for i, xi in enumerate(points):
if i in range(10,120,10):
j += 1
z_sample = np.array([[xi]])
z_sample = np.tile(z_sample, batch_size).reshape(batch_size, latent_dim)
x_decoded = decoder.predict(z_sample, batch_size=batch_size)
digit = x_decoded[0].reshape(digit_size, digit_size,3)
i = i - int(math.floor(i / 10))*10
figure[j * digit_size: (j + 1) * digit_size,
i * digit_size: (i + 1) * digit_size,:] = digit
POINTS.append(digit)
plt.figure(figsize=(10, 10))
plt.imshow(figure)
plt.savefig(file)
# plt.show()
return POINTS
'''Route of nearest images in the training collection , w.r.t reconstrucgted image route'''
def route_reality(file,shrink,points):
x_train=[]
for i in range(1,1001):
image = Image.open('/home/petered/projects/Auto-encoder/pictures/'+ str(i) +'.jpg')
# image = Image.open('/home/kaixin/vae-map/vae_map/pictures_new/' + str(i) + '.jpg')
#
image = image.resize((shrink, shrink)) # downing sampling
image=np.asarray(image)
x_train.append(image)
x_train=np.asarray(x_train)
x_train = x_train.astype('float32') / 255.
x_train = x_train.reshape((x_train.shape[0],) + original_img_size)
# points[i] is a 4 d vector in the latent space.
# POINTS[i] is a 60*60*3 matrix of the real training images.
POINTS=np.zeros((points.shape[0],shrink,shrink,3))
points_index=np.zeros((points.shape[0],))
print(POINTS.shape,'check POINTS shape')
num_p=points.shape[0]
for i in range(num_p):
# generated the images\
g=get_decoded2(points[i])
L=10000
for j,t in enumerate(x_train):
l=LA.norm(g-x_train[j])
if l<L:#seeking for the nearest ones
L=l
POINTS[i]=x_train[j]
points_index[i]=j
print(points_index+1,'Nearest points index')
#============== visualising the route on real map.===============================================================
digit_size = shrink
import math
figure = np.zeros((digit_size*int(math.ceil(POINTS.shape[0]/10)), digit_size*10,3))
print(int(math.ceil(POINTS.shape[0]/10)))
j=0
for i, xi in enumerate(POINTS):
if i in range(10,110,10):
j += 1
digit = xi
i=i-int(math.floor(i/10))*10
# print(i)
figure[j * digit_size: (j + 1) * digit_size,
i * digit_size: (i + 1) * digit_size,:] = digit
plt.figure(figsize=(10, 10))
plt.imshow(figure)
plt.savefig('passway_real_map_'+file+'.png')
# plt.show()
# calculating the loss for this route.
l=0
for j in range(num_p-1):
# #calculate the length of the route.
l += LA.norm(POINTS[j]-POINTS[j+1])
print(l,file+': latent space nearest to reality length.')
return POINTS
'''manually select a route
in order to check if in reality the road has shorter length the straight line.'''
def route_manually(num_p,shrink,file='manually selected'):#file should
# select 50 images from 1-300, included.
# n_digit=np.linspace(1, 300, num=num_p)#equal interval, silly method.
#case one
# n_digit=[1,2,5,6,7,8,9, 10,15,20,21,22,23,24,25,30,39,43,47,150, 156,154,158,163,171, 172,173,174,175,179, 210,215,216,217,218,219,220,233,227,231,255,259, 267,269,271,279,285,290,295,299]
# n_digit=[1,5,8,9, 10,15,20,21,22,23,24,25,30,31,32,33,34,35,36,45,175,179,181,182 ,186,190,192,195, 200,205, 210,215,216,217,218,219,220,233,227,231,255,259, 267,269, 271,279,285,290,295,299]
# n_digit=[300,301,309,312,319,324,326, 327,330,338,341,349,354,360,368,369,516,520,524,530,535,539,575,576,580, 583,585,588,590,592, 594,598,599,600,602,605,610,615,620,622,628,630,633,638, 640,642,646,647,649,650]
# n_digit=[300,301,309,312,319,324,326, 327,330,338,341,349,354,360,368,369,516,520,524,530,535,539,575,576,580, 583,585,588,590,592, 594,598,599,600,602,605,610,615,620,622,628,630,633,638, 640,642,646,647,649,650]
n_digit=[300,301,309,312,319,324,326, 327,330,338,341,349,354,360,368,369,516,520,524,530,535,539,575,576,580, 583,585,588,590,592, 594,598,599,600,602,605,610,615,620,624,719,720,722,725, 730,735,740,745,747,750]
# n_digit=[1,9, 10,15,20,21,25,30,31,32,36,40,45,49,60,70,80,90,100,120,130,140,150 ,160,170,180,190,195, 200,205, 210,215,216,217,218,219,220,233,227,231,255,259, 267,269, 271,279,285,290,295,299]
# n_digit=[1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178, 181, 184, 187, 190, 193, 196, 199, 202, 205, 208, 211, 214, 217, 220, 223, 226, 229, 232, 235, 238, 241, 244, 247, 250, 253, 256, 259, 262, 265, 268, 271, 274, 277, 280, 283, 286, 289, 292, 295, 298]
#case two
#case three
# n_digit=n_digit.astype(int)
digits=[]
for i in n_digit:
# image = Image.open('/home/petered/projects/Auto-encoder/
# tures/'+ str(i) +'.jpg')
# image = Image.open('/home/kaixin/vae-map/vae_map/pictures_new/' + str(i) + '.jpg')
image = Image.open('/home/petered/projects/Auto-encoder/pictures/'+ str(i) +'.jpg')
image = image.resize((60, 60)) # downing sampling
image=np.asarray(image)
# plt.imshow(image)
# plt.show()
digits.append(image)
digits=np.asarray(digits)
digits = digits.astype('float32') / 255.
digits = digits.reshape((digits.shape[0],) + original_img_size)
l=0
print(digits.shape)
for j in range(num_p-1):
# #calculate the length of the route.
l += LA.norm(digits[j]-digits[j+1])
print(l,file+' length.')
#=====visualise the ground truth / manuallly selected ones.=====
digit_size = shrink
figure = np.zeros((digit_size*num_p/10, digit_size*10,3))
j=0
for i, xi in enumerate(digits):
if i in range(10,110,10):
j += 1
digit = xi
i = i - int(math.floor(i / 10))*10
figure[j * digit_size: (j + 1) * digit_size,
i * digit_size: (i + 1) * digit_size,:] = digit
plt.figure(figsize=(10, 10))
plt.imshow(figure)
plt.savefig('passway_'+file+'real frames.png')
# plt.show()
return digits #the same structure and shape as training
''' evaluate each reconstrcted image in the route w.r.t manually selected one, by measuring the distance of it and the next image.
Compare the distance with that of the image and a random image.
for the reconstructed image in the route produced w.r.t the ground truth route.'''
def metric(points,shrink,batch_size):
digit_size = shrink
figure = np.zeros((digit_size*5, digit_size*10,3))
j=0
route=[]
for i, xi in enumerate(points):
if i in range(10,110,10):
j += 1
z_sample = np.array([[xi]])
z_sample = np.tile(z_sample, batch_size).reshape(batch_size, latent_dim)
x_decoded = generator.predict(z_sample, batch_size=batch_size)
digit = x_decoded[0].reshape(digit_size, digit_size,3)
route.append(digit)
x_train=[]
for i in range(1,1001):
image = Image.open('/home/petered/projects/Auto-encoder/pictures/'+ str(i) +'.jpg')
# image = Image.open('/home/kaixin/vae-map/vae_map/pictures_new/' + str(i) + '.jpg')
image = image.resize((shrink, shrink)) # downing sampling
image=np.asarray(image)
x_train.append(image)
x_train=np.asarray(x_train)
x_train = x_train.astype('float32') / 255.
x_train = x_train.reshape((x_train.shape[0],) + original_img_size)
d=[]
d_latent=[]
#route is a vector consisting of the generated images.
for i in range(0,len(route)-1):
d_n=LA.norm(route[i]-route[i+1])
#randomly select a image from the traning set.
d_r=LA.norm(route[i]- x_train[np.random.randint(0,1000)])
d.append(d_r-d_n)
d_n_latent=LA.norm(points[i]-points[i+1])
#randomly select a image from the traning set, and feed it through encoder
image_d = []
image = Image.open('/home/petered/projects/Auto-encoder/pictures/' + str(np.random.randint(1,1001)) + '.jpg')
image = image.resize((shrink, shrink))
image = np.asarray(image)
image = image.tolist()
image_d.append(image)
image_d = np.asarray(image_d)
image_d = np.tile(image_d, (batch_size, 1, 1, 1))
image_d = image_d.astype('float32') / 255.
image_d = image_d.reshape((image_d.shape[0],) + original_img_size)
d_r_latent=LA.norm( points[i]-encoder.predict(image_d, batch_size=batch_size)[0])
d_latent.append(d_r_latent-d_n_latent)
sns.distplot(d)
plt.savefig('distance.png')#compare the route image within a selected route. no use in the thesis.
plt.clf()
sns.distplot(d_latent)
plt.savefig('distance_latent.png')#compare the points in latent space w.r.t the manually selected route.
plt.clf()
sns.distplot(d)
plt.savefig('distance.png')
plt.clf()
sns.distplot(d_latent)
plt.savefig('distance_latent.png')
plt.clf()
'''evaluate how good a produce route is, w.r.t the manually selected one.
'''
def evaluate(points,digits_encoded,POINTS,digits,shrink,batch_size):
#POINTS are the route w.r.t the producced route with the method in this work.
#digits are the route selected manually.
dis_produced=0
dis_manually=0
max_p=0
max_m=0
d_p=[]
d_m=[]
d_p_latent=[]
d_m_latent=[]
for i in range(len(POINTS)-1):
dis_produced += abs(LA.norm(POINTS[i]-POINTS[i+1]))
d_p.append( abs(LA.norm(POINTS[i]-POINTS[i+1])))
d_p_latent.append(abs(LA.norm(points[i]-points[i+1])))
if abs(LA.norm(POINTS[i]-POINTS[i+1]))> max_p:
max_p=abs(LA.norm(POINTS[i]-POINTS[i+1]))
dis_manually += abs(LA.norm(digits[i]-digits[i+1]))
d_m.append(abs(LA.norm(digits[i]-digits[i+1])))
d_m_latent.append(abs(LA.norm(digits_encoded[i]-digits_encoded[i+1])))
if abs(LA.norm(digits[i]-digits[i+1]))> max_m:
max_m=abs(LA.norm(digits[i]-digits[i+1]))
# the sum of distance of each neighbouring image.
print('dis_produced, dis_manually:',dis_produced,',', dis_manually)
#the maximium distance between each pair.
print('max_p,max_m', max_p,max_m)
sns.distplot(d_p,color="skyblue", label="Distribution of neighbour image distances in route produced with GD")
# plt.savefig('distance_p.png')#distribution of distance of neighbour images(real frames) in route
sns.distplot(d_m,color="red", label="Distribution of neighbour image distances in route manually sellected")
plt.legend()
plt.savefig('distance_within_route.png')#distribution of distance of neighbour images(real frames) in manually selected route
plt.clf()
sns.distplot(d_p_latent,color="skyblue", label="Distribution of neighbour pair distances in path produced with GD")
plt.savefig('distance_p_latent.png')#
plt.clf()
sns.distplot(d_m_latent,color="red", label="Distribution of neighbour pair distances in path w.r.t. manually selected route")
plt.legend(loc=2, fontsize = 'x-small')
plt.savefig('distance_m_latent.png')
return dis_produced, dis_manually