-
Notifications
You must be signed in to change notification settings - Fork 1
/
training_model_vae_deconv _4d_latent.py
242 lines (195 loc) · 8.96 KB
/
training_model_vae_deconv _4d_latent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
'''This script demonstrates how to learn a representaion of image data using a variational autoencoder with Keras and convolution layers.
The structure draw much inspiratin from https://github.com/keras-team/keras
'''
from keras.callbacks import EarlyStopping, ModelCheckpoint
from PIL import Image
import scipy.misc
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from keras.layers import Input, Dense, Lambda, Flatten, Reshape, Layer,Dropout
from keras.layers import Conv2D, Conv2DTranspose,MaxPooling2D
from keras.models import Model
from keras import backend as K
from keras import metrics
from keras.datasets import mnist
from keras.models import model_from_json
shrink=60# input image dimensions
img_rows, img_cols, img_chns = shrink,shrink, 3
filters =32# number of convolutional filters to use
num_conv = 3
stri=1 #stride value of last con layer
stri2=1
batch_size = 20
if K.image_data_format() == 'channels_first':
original_img_size = (img_chns, img_rows, img_cols)
else:
original_img_size = (img_rows, img_cols, img_chns)
latent_dim = 4
intermediate_dim = 256
epsilon_std = 1.0
epochs = 20000
x = Input(shape=original_img_size)
conv_1 = Conv2D(img_chns,
kernel_size=(2, 2),
kernel_initializer='random_uniform',
padding='same', activation='relu')(x)
conv_2 = Conv2D(filters,
kernel_size=(2, 2),
kernel_initializer='random_uniform',
padding='same', activation='relu',
strides=(2, 2))(conv_1)
# max_pool1 = MaxPooling2D(pool_size=(2, 2),strides=None, padding='valid', data_format=None)(conv_2)
conv_3 = Conv2D(filters,
kernel_size=num_conv,
kernel_initializer='random_uniform',
padding='same', activation='relu',
strides=(stri2, stri2))(conv_2)
# max_pool2 = MaxPooling2D(pool_size=(2, 2),strides=None, padding='valid', data_format=None)(conv_3)
conv_4 = Conv2D(filters,
kernel_size=num_conv,
kernel_initializer='random_uniform',
padding='same', activation='relu',
strides=(stri, stri))(conv_3)
# max_pool3 = MaxPooling2D(pool_size=(2, 2),strides=None, padding='valid', data_format=None)(conv_4)
flat = Flatten()(conv_4)
hidden = Dense(intermediate_dim, activation='relu')(flat)
h=Dropout(0.5)(hidden)
z_mean = Dense(latent_dim)(h)
z_log_var = Dense(latent_dim)(h)
def sampling(args):
z_mean, z_log_var = args
epsilon = K.random_normal(shape=(K.shape(z_mean)[0], latent_dim),
mean=0., stddev=epsilon_std)
return z_mean + K.exp(z_log_var) * epsilon
# note that "output_shape" isn't necessary with the TensorFlow backend
# so you could write `Lambda(sampling)([z_mean, z_log_var])`
z = Lambda(sampling, output_shape=(latent_dim,))([z_mean, z_log_var])
# we instantiate these layers separately so as to reuse them later
decoder_hid = Dense(intermediate_dim,input_shape=(latent_dim,), activation='relu')
decoder_upsample = Dense(filters * (shrink/2) * (shrink/2), activation='relu')
if K.image_data_format() == 'channels_first':
output_shape = (batch_size, filters, (shrink/2),(shrink/2))
else:
output_shape = (batch_size, (shrink/2), (shrink/2), filters)
decoder_reshape = Reshape(output_shape[1:])
decoder_deconv_1 = Conv2DTranspose(filters,
kernel_size=num_conv,
kernel_initializer='random_uniform',
padding='same',
strides=(stri, stri),
activation='relu')
decoder_deconv_2 = Conv2DTranspose(filters,
kernel_size=num_conv,
kernel_initializer='random_uniform',
padding='same',
strides=(stri2, stri2),
activation='relu')
if K.image_data_format() == 'channels_first':
output_shape = (batch_size, filters, 29, 29)
else:
output_shape = (batch_size, 29, 29, filters)
decoder_deconv_3_upsamp = Conv2DTranspose(filters,
kernel_size=(3, 3),
kernel_initializer='random_uniform',
strides=(2, 2),
padding='valid',
activation='relu')
decoder_mean_squash = Conv2D(img_chns,
kernel_size=2,
kernel_initializer='random_uniform',
padding='valid',
activation='sigmoid')
hid_decoded = decoder_hid(z)
up_decoded_=Dropout(0.5)(hid_decoded)
up_decoded = decoder_upsample(up_decoded_)
reshape_decoded = decoder_reshape(up_decoded)
deconv_1_decoded = decoder_deconv_1(reshape_decoded)
deconv_2_decoded = decoder_deconv_2(deconv_1_decoded)
x_decoded_relu = decoder_deconv_3_upsamp(deconv_2_decoded)
x_decoded_mean_squash = decoder_mean_squash(x_decoded_relu)
# Custom loss layer
class CustomVariationalLayer(Layer):
def __init__(self, **kwargs):
self.is_placeholder = True
super(CustomVariationalLayer, self).__init__(**kwargs)
def vae_loss(self, x, x_decoded_mean_squash):
x = K.flatten(x)
x_decoded_mean_squash = K.flatten(x_decoded_mean_squash)
xent_loss = img_rows * img_cols * metrics.binary_crossentropy(x, x_decoded_mean_squash)
kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1)
return K.mean(xent_loss + kl_loss)
def call(self, inputs):
x = inputs[0]
x_decoded_mean_squash = inputs[1]
loss = self.vae_loss(x, x_decoded_mean_squash)
self.add_loss(loss, inputs=inputs)
# We don't use this output.
return x
y = CustomVariationalLayer()([x, x_decoded_mean_squash])
vae = Model(x, y)
from keras import optimizers
# optimizer=optimizers.SGD(lr=0.0001, momentum=0.0, decay=0.0, nesterov=False)
optimizer=optimizers.RMSprop(lr=0.0001, rho=0.9, epsilon=1e-07, decay=0.999)
vae.compile(optimizer=optimizer, loss= None)
# vae.compile(optimizer='rmsprop', loss=None)
vae.summary()
#========================load images for traing==========================================
x_train=[]
for i in range(1,1001):
image = Image.open('/home/petered/projects/Auto-encoder/pictures/'+ str(i) +'.jpg')#change the path to the file address where your image data is stored.
image = image.resize((shrink, shrink)) # downing sampling
image=np.asarray(image)
# image= np.mean(image, axis=(2))
x_train.append(image)
x_train=np.asarray(x_train)
x_train = x_train.astype('float32') / 255.
x_train = x_train.reshape((x_train.shape[0],) + original_img_size)
print('x_train.shape:', x_train.shape)
early_stopping = EarlyStopping(monitor='val_loss', patience=500)
train_history=vae.fit(x_train,
callbacks=[early_stopping],
shuffle=True,
epochs=epochs,
batch_size=batch_size)
#=============================plotting loss during training
loss = train_history.history['loss']
plt.plot(loss)
plt.savefig('loss_conv-4d.png')
plt.show()
vae.save('vae_conv-4d.h5')
from keras.utils import plot_model
plot_model(vae, to_file='model-4d.png')
# build a model to project inputs on the latent space
encoder = Model(x, z_mean)
# build a digit generator that can sample from the learned distribution
decoder_input = Input(shape=(latent_dim,))
_hid_decoded = decoder_hid(decoder_input)
_up_decoded_=Dropout(0.5)(up_decoded)
_up_decoded = decoder_upsample(_hid_decoded)
_reshape_decoded = decoder_reshape(_up_decoded)
_deconv_1_decoded = decoder_deconv_1(_reshape_decoded)
_deconv_2_decoded = decoder_deconv_2(_deconv_1_decoded)
_x_decoded_relu = decoder_deconv_3_upsamp(_deconv_2_decoded)
_x_decoded_mean_squash = decoder_mean_squash(_x_decoded_relu)
generator = Model(decoder_input, _x_decoded_mean_squash)
# =================display a 2D manifold of the digits============
n =15 # figure with 15x15 digits
digit_size = shrink
figure = np.zeros((digit_size * n, digit_size * n,3))
# linearly spaced coordinates on the unit square were transformed through the inverse CDF (ppf) of the Gaussian
# to produce values of the latent variables z, since the prior of the latent space is Gaussian
grid_x = norm.ppf(np.linspace(0.05, 0.95, n))
grid_y = norm.ppf(np.linspace(0.05, 0.95, n))
for i, yi in enumerate(grid_x):
for j, xi in enumerate(grid_y):
z_sample = np.array([[xi, yi,1,1]])#under the asumption of 4 dimension latent space
z_sample = np.tile(z_sample, batch_size).reshape(batch_size, latent_dim)
x_decoded = generator.predict(z_sample, batch_size=batch_size)
digit = x_decoded[0].reshape(digit_size, digit_size,3)
figure[i * digit_size: (i + 1) * digit_size,
j * digit_size: (j + 1) * digit_size,:] = digit
plt.figure(figsize=(10, 10))
plt.imshow(figure)
plt.savefig('manifold-4d.png')
plt.show()