-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheval_fewshot.py
126 lines (102 loc) · 3.99 KB
/
eval_fewshot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import random
import numpy as np
from tqdm import tqdm
from datasets.data import *
from sklearn.svm import SVC
from sklearn.preprocessing import MinMaxScaler, StandardScaler, RobustScaler
from utils import build_model, build_ft_cls
from parser import args
print(f'====== Fewshot evaluation on {args.ft_dataset} ======')
print(f'------ n_runs: {args.n_runs}')
print(f'------ k_way: {args.k_way}')
print(f'------ n_shot: {args.n_shot}')
print(f'------ n_query: {args.n_query}')
device = torch.device("cuda:%d" % args.rank)
# ------ 1. used finetuned model
# model = build_ft_cls()
# ------ 2. used pretrained model
model = build_model()
model = model.to(device)
save_path = os.path.join('runs', args.proj_name, args.exp_name, 'models', 'model_best.pth')
state_dict = torch.load(save_path)
model.load_state_dict(state_dict)
if args.ft_dataset == 'ModelNet40':
# ModelNet40 - Few Shot Learning
data_train, label_train = load_modelnet_data('train')
data_test, label_test = load_modelnet_data('test')
n_cls = 40
elif args.ft_dataset == 'ScanObjectNN':
# ScanObjectNN - Few Shot Learning
data_train, label_train = load_ScanObjectNN('train')
data_test, label_test = load_ScanObjectNN('test')
n_cls = 15
label_idx = {}
for key in range(n_cls):
label_idx[key] = []
for i, label in enumerate(label_train):
# if label[0] == key:
if label == key:
label_idx[key].append(i)
acc = []
for run in tqdm(range(args.n_runs)):
k = args.k_way ; n_shot = args.n_shot ; n_q = args.n_query
k_way = random.sample(range(n_cls), k)
data_support = [] ; label_support = [] ; data_query = [] ; label_query = []
for i, class_id in enumerate(k_way):
support_id = random.sample(label_idx[class_id], n_shot)
query_id = random.sample(list(set(label_idx[class_id]) - set(support_id)), n_q)
pc_support_id = data_train[support_id]
pc_query_id = data_train[query_id]
data_support.append(pc_support_id)
label_support.append(i * np.ones(n_shot))
data_query.append(pc_query_id)
label_query.append(i * np.ones(n_q))
data_support = np.concatenate(data_support)
label_support = np.concatenate(label_support)
data_query = np.concatenate(data_query)
label_query = np.concatenate(label_query)
model = model.eval()
feats_train = []
labels_train = []
for i in range(k * n_shot):
data = torch.from_numpy(np.expand_dims(data_support[i], axis = 0))
label = int(label_support[i])
data = data.to(device)
with torch.no_grad():
''' # NOTE: use model `backbone_feats` '''
feat = model(data)[1]
feat = feat.tolist()
feats_train.append(feat)
labels_train.append(label)
feats_train = np.array(feats_train)
# squeeze the dimension whose value is 1
feats_train = np.squeeze(feats_train)
labels_train = np.array(labels_train)
feats_test = []
labels_test = []
for i in range(k * n_q):
data = torch.from_numpy(np.expand_dims(data_query[i], axis = 0))
label = int(label_query[i])
data = data.to(device)
with torch.no_grad():
''' # NOTE: use model `backbone_feats` '''
feat = model(data)[1]
feat = feat.tolist()
feats_test.append(feat)
labels_test.append(label)
feats_test = np.array(feats_test)
# squeeze the dimension whose value is 1
feats_test = np.squeeze(feats_test)
labels_test = np.array(labels_test)
# scaler = MinMaxScaler()
scaler = StandardScaler()
train_scaled = scaler.fit_transform(feats_train)
model_tl = SVC(C=args.svm_coff, kernel='linear')
model_tl.fit(train_scaled, labels_train)
test_scaled = scaler.transform(feats_test)
accuracy = model_tl.score(test_scaled, labels_test) * 100
acc.append(accuracy)
# print(f"C = {c} : {model_tl.score(test_scaled, labels_test)}")
# print(f"Run - {run + 1} : {accuracy}")
print(f'------ Acc: {np.mean(acc)} +/- {np.std(acc)}\n')