-
Notifications
You must be signed in to change notification settings - Fork 35
/
model_autopst.py
258 lines (180 loc) · 8.82 KB
/
model_autopst.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from utils import filter_bank_mean
from fast_decoders import DecodeFunc_Sp
from model_sea import Encoder_2 as Encoder_Code_2
from override_decoder import OnmtDecoder_1 as OnmtDecoder
from onmt_modules.misc import sequence_mask
from onmt_modules.embeddings import PositionalEncoding
from onmt_modules.encoder_transformer import TransformerEncoder as OnmtEncoder
class Prenet(nn.Module):
def __init__(self, dim_input, dim_output, dropout=0.1):
super().__init__()
mlp = nn.Linear(dim_input, dim_output, bias=True)
pe = PositionalEncoding(dropout, dim_output, 1600)
self.make_prenet = nn.Sequential()
self.make_prenet.add_module('mlp', mlp)
self.make_prenet.add_module('pe', pe)
self.word_padding_idx = 1
def forward(self, source, step=None):
for i, module in enumerate(self.make_prenet._modules.values()):
if i == len(self.make_prenet._modules.values()) - 1:
source = module(source, step=step)
else:
source = module(source)
return source
class Decoder_Sp(nn.Module):
"""
Speech Decoder
"""
def __init__(self, hparams):
super().__init__()
self.dim_freq = hparams.dim_freq
self.max_decoder_steps = hparams.dec_steps_sp
self.gate_threshold = hparams.gate_threshold
prenet = Prenet(hparams.dim_freq, hparams.dec_rnn_size)
self.decoder = OnmtDecoder.from_opt(hparams, prenet)
self.postnet = nn.Linear(hparams.dec_rnn_size,
hparams.dim_freq+1, bias=True)
def forward(self, tgt, tgt_lengths, memory_bank, memory_lengths):
dec_outs, attns = self.decoder(tgt, memory_bank, step=None,
memory_lengths=memory_lengths,
tgt_lengths=tgt_lengths)
spect_gate = self.postnet(dec_outs)
spect, gate = spect_gate[:, :, 1:], spect_gate[:, :, :1]
return spect, gate
class Encoder_Tx_Spk(nn.Module):
"""
Text Encoder
"""
def __init__(self, hparams):
super().__init__()
prenet = Prenet(hparams.dim_code+hparams.dim_spk,
hparams.enc_rnn_size)
self.encoder = OnmtEncoder.from_opt(hparams, prenet)
def forward(self, src, src_lengths, spk_emb):
spk_emb = spk_emb.unsqueeze(0).expand(src.size(0),-1,-1)
src_spk = torch.cat((src, spk_emb), dim=-1)
enc_states, memory_bank, src_lengths = self.encoder(src_spk, src_lengths)
return enc_states, memory_bank, src_lengths
class Decoder_Tx(nn.Module):
"""
Text Decoder with stop
and num_rep prediction
"""
def __init__(self, hparams):
super().__init__()
self.dim_code = hparams.dim_code
self.max_decoder_steps = hparams.dec_steps_tx
self.gate_threshold = hparams.gate_threshold
self.dim_rep = hparams.dim_rep
prenet = Prenet(hparams.dim_code, hparams.dec_rnn_size)
self.decoder = OnmtDecoder.from_opt(hparams, prenet)
self.postnet_1 = nn.Linear(hparams.dec_rnn_size,
hparams.dim_code+1, bias=True)
self.postnet_2 = nn.Linear(hparams.dec_rnn_size,
self.dim_rep, bias=True)
def forward(self, tgt, tgt_lengths, memory_bank, memory_lengths):
dec_outs, attns = self.decoder(tgt, memory_bank, step=None,
memory_lengths=memory_lengths,
tgt_lengths=tgt_lengths)
gate_text = self.postnet_1(dec_outs)
rep = self.postnet_2(dec_outs)
gate, text = gate_text[:, :, :1], gate_text[:, :, 1:]
return text, gate, rep
class Generator_1(nn.Module):
'''
sync stage 1
'''
def __init__(self, hparams):
super().__init__()
self.encoder_cd = Encoder_Code_2(hparams)
self.encoder_tx = Encoder_Tx_Spk(hparams)
self.decoder_sp = Decoder_Sp(hparams)
self.encoder_spk = nn.Linear(hparams.dim_spk,
hparams.enc_rnn_size, bias=True)
self.fast_dec_sp = DecodeFunc_Sp(hparams, 'Sp')
def pad_sequences_rnn(self, cd_short, num_rep, len_long):
B, L, C = cd_short.size()
out_tensor = torch.zeros((B, len_long.max(), C), device=cd_short.device)
'''
len_long = len_spect + 1
'''
for i in range(B):
code_sync = cd_short[i].repeat_interleave(num_rep[i], dim=0)
out_tensor[i, :len_long[i]-1, :] = code_sync
return out_tensor
def forward(self, cep_in, mask_long, codes_mask, num_rep, len_short,
tgt_spect, len_spect,
spk_emb):
cd_long = self.encoder_cd(cep_in, mask_long)
fb = filter_bank_mean(num_rep, codes_mask, cd_long.size(1))
cd_short = torch.bmm(fb.detach(), cd_long)
cd_short_sync = self.pad_sequences_rnn(cd_short, num_rep, len_spect)
spk_emb_1 = self.encoder_spk(spk_emb)
# text to speech
_, memory_tx, _ = self.encoder_tx(cd_short_sync.transpose(1,0), len_spect,
spk_emb)
memory_tx_spk = torch.cat((spk_emb_1.unsqueeze(0), memory_tx), dim=0)
self.decoder_sp.decoder.init_state(memory_tx_spk, None, None)
spect_out, gate_sp_out \
= self.decoder_sp(tgt_spect, len_spect, memory_tx_spk, len_spect+1)
return spect_out, gate_sp_out
def infer_onmt(self, cep_in, mask_long,
len_spect,
spk_emb):
cd_long = self.encoder_cd(cep_in, mask_long)
spk_emb_1 = self.encoder_spk(spk_emb)
# text to speech
_, memory_tx, _ = self.encoder_tx(cd_long.transpose(1,0), len_spect,
spk_emb)
memory_tx_spk = torch.cat((spk_emb_1.unsqueeze(0), memory_tx), dim=0)
self.decoder_sp.decoder.init_state(memory_tx_spk, None, None)
spect_output, len_spect_out, stop_sp_output \
= self.fast_dec_sp.infer(None, memory_tx_spk, len_spect+1,
self.decoder_sp.decoder,
self.decoder_sp.postnet)
return spect_output, len_spect_out
class Generator_2(nn.Module):
'''
async stage 2
'''
def __init__(self, hparams):
super().__init__()
self.encoder_cd = Encoder_Code_2(hparams)
self.encoder_tx = Encoder_Tx_Spk(hparams)
self.decoder_sp = Decoder_Sp(hparams)
self.encoder_spk = nn.Linear(hparams.dim_spk,
hparams.enc_rnn_size, bias=True)
self.fast_dec_sp = DecodeFunc_Sp(hparams, 'Sp')
def forward(self, cep_in, mask_long, codes_mask, num_rep, len_short,
tgt_spect, len_spect,
spk_emb):
cd_long = self.encoder_cd(cep_in, mask_long)
fb = filter_bank_mean(num_rep, codes_mask, cd_long.size(1))
cd_short = torch.bmm(fb.detach(), cd_long.detach())
spk_emb_1 = self.encoder_spk(spk_emb)
# text to speech
_, memory_tx, _ = self.encoder_tx(cd_short.transpose(1,0), len_short,
spk_emb)
memory_tx_spk = torch.cat((spk_emb_1.unsqueeze(0), memory_tx), dim=0)
self.decoder_sp.decoder.init_state(memory_tx_spk, None, None)
spect_out, gate_sp_out \
= self.decoder_sp(tgt_spect, len_spect, memory_tx_spk, len_short+1)
return spect_out, gate_sp_out
def infer_onmt(self, cep_in, mask_long, len_spect,
spk_emb):
cd_long = self.encoder_cd(cep_in, mask_long)
spk_emb_1 = self.encoder_spk(spk_emb)
# text to speech
_, memory_tx, _ = self.encoder_tx(cd_long.transpose(1,0), len_spect,
spk_emb)
memory_tx_spk = torch.cat((spk_emb_1.unsqueeze(0), memory_tx), dim=0)
self.decoder_sp.decoder.init_state(memory_tx_spk, None, None)
spect_output, len_spect_out, stop_sp_output \
= self.fast_dec_sp.infer(None, memory_tx_spk, len_spect+1,
self.decoder_sp.decoder,
self.decoder_sp.postnet)
return spect_output, len_spect_out