-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
149 lines (125 loc) · 3.84 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#include <iostream>
#include <cmath>
#include <string>
using namespace std;
#define ULONG unsigned long int
/*
The first task we hit is to calculate a fairly small
number (e) that shares no factors (m)
m = (P-1)*(Q-1)
now, find e such that greatest common divisor (GCD) of
e and m is 1.
*/
ULONG gcd(ULONG x, ULONG y)
// Calculates the greatest common divisor of x and y
{
if(!x)
return y;
return gcd(y%x, x);
}
/*
Next: Find the integer d, such that: (d * e) % m == 1
this is called the "modular congruence" of e and m. To
do that, we will use another version of the GCD function
known as "Euclid's Extended Algorithm. I could have
overloaded the name; however, I don't want them confused,
so I will name them differently.
*/
// Function for extended Euclidean Algorithm
ULONG gcdExtended(ULONG a, ULONG b, ULONG* x, ULONG* y)
{
// Base Case
if (a == 0)
{
*x = 0, *y = 1;
return b;
}
// To store results of recursive call
ULONG x1, y1;
ULONG gcd = gcdExtended(b % a, a, &x1, &y1);
// Update x and y using results of recursive
// call
*x = y1 - (b / a) * x1;
*y = x1;
return gcd;
}
/*
Now, the gcdExtended will be used to calculate the
modular congruence. (These are a pair.)
*/
ULONG modularCongruence(ULONG a, ULONG m)
{
ULONG x, y;
//ULONG g =
gcdExtended(a, m, &x, &y);
return (x % m + m) % m;
}
/*
Finally, we will need to compute (A^B)%C
which is the heart of the RSA algorithm.
*/
ULONG computeRsa(ULONG a, ULONG b, ULONG c)
// Calculates (a^b)%c
{
ULONG y, z, i, j, k;
y=a; z=(ULONG)1;
j=ceil(log(b+1)/log(2))*8;
for(i=1,k=1; k<=j; k++,i=i<<1)
{
if(b&i)
{
z = z * y % c;
}
y = y * y % c;
}
return z;
}
int main(void)
{
ULONG p = 71; // First prime
ULONG q = 73; // Second prime
ULONG n = p * q; // Greatest value THIS code can encrypt
ULONG m = (p-1)*(q-1); // Value used for finding greatest common divisor
ULONG e = 2; // Derived number (may increase inside the following loop)
ULONG d = 2;
// Find Public Key / Derived Number (e)
while( gcd(e, m)!=1 )
e++;
// Calculate Private key (d) such that (d * e) % m == 1
d = modularCongruence(e,m);
// Print values to terminal
cout<<'\n'<<"p = "<<p<<", "<<"q = "<<q<<'\t'<<" are SECRET!"<<'\n'<<endl;
cout<<"n = "<<n<<endl;
cout<<"m = "<<m<<endl;
cout<<"e = "<<e<<endl;
cout<<"d = "<<d<<'\n'<<endl;
// Print public and private key values
cout<<"public key:"<<'\t'<<e<<'\t'<<n<<endl;
cout<<"private key:"<<'\t'<<d<<'\t'<<n<<'\n'<<endl;
string str = ""; // Stores line from terminal
ULONG ch; // Stores a character read from the terminal
ULONG c; // Stores RSA Encrypted Ciphertext
ULONG dc; // Stores Decrypted Ciphertext
// Loop continues until the user enters an empty line
while (true)
{
// Prompt user for char
cout<<"Enter a character, or an empty line to quit: ";
// Read line of input from terminal
getline(cin, str);
// If user enters an empty line, exit loop
if ( str.empty() )
break;
// Assign (ch) the first character in stream buffer
ch = (ULONG) str[0];
// Fetch encrypted ciphertext using RSA algorithm
c = computeRsa(ch,e,n);
// Decrypt the output RSA algorithm
dc = computeRsa(c,d,n);
// Print values to terminal
cout<<"Plain text: "<<static_cast<int>(ch)<<endl;
cout<<"Cryptotext: "<<c<<endl;
cout<<"Decrypted Output: "<<dc<<'\t'<<static_cast<unsigned char>(dc)<<'\n'<<endl;
}
return 0;
}