-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy path03_pytorch_mnist_hpo.py
348 lines (296 loc) · 14.1 KB
/
03_pytorch_mnist_hpo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
"""This script runs a Hyperparameter Optimisation (HPO) using DEHB to tune the architecture and
training hyperparameters for training a neural network on MNIST in PyTorch.
The parameter space is defined in the get_configspace() function. Any configuration sampled from
this space can be passed to an object of class Model() which can instantiate a CNN architecture
from it. The objective_function() is the target function that DEHB minimizes for this problem. This
function instantiates an architecture, an optimizer, as defined by a configuration and performs the
training and evaluation (on the validation set) as per the fidelity passed.
The argument `runtime` can be passed to DEHB as a wallclock budget for running the optimization.
This tutorial also briefly refers to the different methods of interfacing DEHB with the Dask
parallelism framework. Moreover, also introduce how GPUs may be managed, which is recommended for
running this example tutorial.
Additional requirements:
* torch>=1.7.1
* torchvision>=0.8.2
* torchsummary>=1.5.1
PyTorch code referenced from: https://github.com/pytorch/examples/blob/master/mnist/main.py
"""
import argparse
import os
import pickle
import time
import ConfigSpace
import ConfigSpace.hyperparameters as CSH
import numpy as np
import torch
import torch.nn.functional as F
import torchvision
from distributed import Client
from torch import nn, optim
from torchsummary import summary
from torchvision import transforms
from dehb import DEHB
class Model(nn.Module):
def __init__(self, config, img_dim=28, output_dim=10):
super().__init__()
self.output_dim = output_dim
self.pool_kernel = 2
self.pool_stride = 1
self.maxpool = nn.MaxPool2d(self.pool_kernel, self.pool_stride)
self.conv1 = nn.Conv2d(
in_channels=1,
out_channels=config["channels_1"],
kernel_size=config["kernel_1"],
stride=config["stride_1"],
padding=0,
dilation=1,
)
# updating image size after conv1
img_dim = self._update_size(img_dim, config["kernel_1"], config["stride_1"], 0, 1)
self.conv2 = nn.Conv2d(
in_channels=config["channels_1"],
out_channels=config["channels_2"],
kernel_size=config["kernel_2"],
stride=config["stride_2"],
padding=0,
dilation=1,
)
# updating image size after conv2
img_dim = self._update_size(img_dim, config["kernel_2"], config["stride_2"], 0, 1)
# updating image size after maxpool
img_dim = self._update_size(img_dim, self.pool_kernel, self.pool_stride, 0, 1)
self.dropout = nn.Dropout(config["dropout"])
hidden_dim = config["hidden"]
self.fc1 = nn.Linear(img_dim * img_dim * config["channels_2"], hidden_dim)
self.fc2 = nn.Linear(hidden_dim, self.output_dim)
def forward(self, x):
# Layer 1
x = self.conv1(x)
x = F.relu(x)
x = self.dropout(x)
# Layer 2
x = self.conv2(x)
x = F.relu(x)
x = self.maxpool(x)
x = self.dropout(x)
# FC Layer 1
x = torch.flatten(x, 1)
x = self.fc1(x)
# Output layer
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
def _update_size(self, dim, kernel_size, stride, padding, dilation):
return int(np.floor((dim + 2 * padding - (dilation * (kernel_size - 1) + 1)) / stride + 1))
def get_configspace(seed=None):
# Hyperparameter defining first Conv layer
kernel1 = CSH.OrdinalHyperparameter("kernel_1", sequence=[3, 5, 7], default_value=5)
channels1 = CSH.UniformIntegerHyperparameter("channels_1", lower=3, upper=64,
default_value=32)
stride1 = CSH.UniformIntegerHyperparameter("stride_1", lower=1, upper=2, default_value=1)
# Hyperparameter defining second Conv layer
kernel2 = CSH.OrdinalHyperparameter("kernel_2", sequence=[3, 5, 7], default_value=5)
channels2 = CSH.UniformIntegerHyperparameter("channels_2", lower=3, upper=64,
default_value=32)
stride2 = CSH.UniformIntegerHyperparameter("stride_2", lower=1, upper=2, default_value=1)
# Hyperparameter for FC layer
hidden = CSH.UniformIntegerHyperparameter(
"hidden", lower=32, upper=256, log=True, default_value=128
)
# Regularization Hyperparameter
dropout = CSH.UniformFloatHyperparameter("dropout", lower=0, upper=0.5, default_value=0.1)
# Training Hyperparameters
batch_size = CSH.OrdinalHyperparameter(
"batch_size", sequence=[2, 4, 8, 16, 32, 64], default_value=4
)
lr = CSH.UniformFloatHyperparameter("lr", lower=1e-6, upper=0.1, log=True,
default_value=1e-3)
cs = ConfigSpace.ConfigurationSpace(seed)
cs.add_hyperparameters([
kernel1,
channels1,
stride1,
kernel2,
channels2,
stride2,
hidden,
dropout,
batch_size,
lr,
])
return cs
def train(model, device, train_loader, optimizer):
model.train()
for _batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
def evaluate(model, device, data_loader, acc=False):
model.eval()
loss = 0
correct = 0
with torch.no_grad():
for data, target in data_loader:
data, target = data.to(device), target.to(device)
output = model(data)
loss += F.nll_loss(output, target, reduction="sum").item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
loss /= len(data_loader.dataset)
correct /= len(data_loader.dataset)
if acc:
return correct
return loss
def train_and_evaluate(config, max_fidelity, verbose=False, **kwargs):
device = kwargs["device"]
batch_size = config["batch_size"]
train_set = kwargs["train_set"]
test_set = kwargs["test_set"]
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False)
model = Model(config).to(device)
optimizer = optim.Adadelta(model.parameters(), lr=config["lr"])
for epoch in range(1, int(max_fidelity)+1):
train(model, device, train_loader, optimizer)
accuracy = evaluate(model, device, test_loader, acc=True)
if verbose:
summary(model, (1, 28, 28)) # image dimensions for MNIST
return accuracy
def objective_function(config, fidelity, **kwargs):
"""The target function to minimize for HPO"""
device = kwargs["device"]
# Data Loaders
batch_size = config["batch_size"]
train_set = kwargs["train_set"]
valid_set = kwargs["valid_set"]
test_set = kwargs["test_set"]
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True)
valid_loader = torch.utils.data.DataLoader(valid_set, batch_size=batch_size, shuffle=False)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False)
# Build model
model = Model(config).to(device)
# Optimizer
optimizer = optim.Adadelta(model.parameters(), lr=config["lr"])
start = time.time() # measuring wallclock time
for _epoch in range(1, int(fidelity)+1):
train(model, device, train_loader, optimizer)
valid_loss = evaluate(model, device, valid_loader)
cost = time.time() - start
# not including test score computation in the `cost`
test_loss = evaluate(model, device, test_loader)
# dict representation that DEHB requires
res = {
"fitness": valid_loss,
"cost": cost,
"info": {"test_loss": test_loss, "fidelity": fidelity},
}
return res
def input_arguments():
parser = argparse.ArgumentParser(description="Optimizing MNIST in PyTorch using DEHB.")
parser.add_argument("--no_cuda", action="store_true", default=False,
help="disables CUDA training")
parser.add_argument("--seed", type=int, default=123, metavar="S",
help="random seed (default: 123)")
parser.add_argument("--refit_training", action="store_true", default=False,
help="Refit with incumbent configuration on full training data and fidelity")
parser.add_argument("--min_fidelity", type=float, default=None,
help="Minimum fidelity (epoch length)")
parser.add_argument("--max_fidelity", type=float, default=None,
help="Maximum fidelity (epoch length)")
parser.add_argument("--eta", type=int, default=3,
help="Parameter for Hyperband controlling early stopping aggressiveness")
parser.add_argument("--output_path", type=str, default="./pytorch_mnist_dehb",
help="Directory for DEHB to write logs and outputs")
parser.add_argument("--scheduler_file", type=str, default=None,
help="The file to connect a Dask client with a Dask scheduler")
parser.add_argument("--n_workers", type=int, default=1,
help="Number of CPU workers for DEHB to distribute function evaluations to")
parser.add_argument("--single_node_with_gpus", default=False, action="store_true",
help="If True, signals the DEHB run to assume all required GPUs are on "
"the same node/machine. To be specified as True if no client is "
"passed and n_workers > 1. Should be set to False if a client is "
"specified as a scheduler-file created. The onus of GPU usage is then"
"on the Dask workers created and mapped to the scheduler-file.")
parser.add_argument("--verbose", action="store_true", default=False,
help="Decides verbosity of DEHB optimization")
parser.add_argument("--runtime", type=float, default=300,
help="Total time in seconds as fidelity to run DEHB")
args = parser.parse_args()
return args
def main():
args = input_arguments()
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
torch.manual_seed(args.seed)
# Data Preparation
transform = transforms.Compose([
transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))
])
train_set = torchvision.datasets.MNIST(
root="./data", train=True, download=True, transform=transform
)
train_set, valid_set = torch.utils.data.random_split(train_set, [50000, 10000])
test_set = torchvision.datasets.MNIST(
root="./data", train=False, download=True, transform=transform
)
# Get configuration space
cs = get_configspace(args.seed)
dimensions = len(cs.get_hyperparameters())
# Some insights into Dask interfaces to DEHB and handling GPU devices for parallelism:
# * if args.scheduler_file is specified, args.n_workers need not be specifed --- since
# args.scheduler_file indicates a Dask client/server is active
# * if args.scheduler_file is not specified and args.n_workers > 1 --- the DEHB object
# creates a Dask client as at instantiation and dies with the associated DEHB object
# * if args.single_node_with_gpus is True --- assumes that all GPU devices indicated
# through the environment variable "CUDA_VISIBLE_DEVICES" resides on the same machine
# Dask checks and setups
single_node_with_gpus = args.single_node_with_gpus
if args.scheduler_file is not None and os.path.isfile(args.scheduler_file):
client = Client(scheduler_file=args.scheduler_file)
# explicitly delegating GPU handling to Dask workers defined
single_node_with_gpus = False
else:
client = None
###########################
# DEHB optimisation block #
###########################
np.random.seed(args.seed)
dehb = DEHB(f=objective_function,
cs=cs,
dimensions=dimensions,
min_fidelity=args.min_fidelity,
max_fidelity=args.max_fidelity,
eta=args.eta,
output_path=args.output_path,
seed=args.seed,
log_level="INFO",
# if client is not None and of type Client, n_workers is ignored
# if client is None, a Dask client with n_workers is set up
client=client, n_workers=args.n_workers)
traj, runtime, history = dehb.run(total_cost=args.runtime,
# arguments below are part of **kwargs shared across workers
train_set=train_set, valid_set=valid_set, test_set=test_set,
single_node_with_gpus=single_node_with_gpus, device=device)
# end of DEHB optimisation
# Saving optimisation trace history
name = time.strftime("%x %X %Z", time.localtime(dehb.start))
name = name.replace("/", "-").replace(":", "-").replace(" ", "_")
dehb.logger.info("Saving optimisation trace history...")
with open(os.path.join(args.output_path, f"history_{name}.pkl"), "wb") as f:
pickle.dump(history, f)
# Retrain and evaluate best found configuration
if args.refit_training:
dehb.logger.info("Retraining on complete training data to compute test metrics...")
train_set = torchvision.datasets.MNIST(
root="./data", train=True, download=True, transform=transform
)
incumbent = dehb.vector_to_configspace(dehb.inc_config)
acc = train_and_evaluate(incumbent, args.max_fidelity, verbose=True,
train_set=train_set, test_set=test_set, device=device)
dehb.logger.info(f"Test accuracy of {acc:.3f} for the best found configuration: ")
dehb.logger.info(incumbent)
if __name__ == "__main__":
main()