-
Notifications
You must be signed in to change notification settings - Fork 41
/
eval_meshes.py
155 lines (123 loc) · 5.33 KB
/
eval_meshes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import torch
import trimesh
from torch.utils.data import Dataset, DataLoader
import numpy as np; np.set_printoptions(precision=4)
import shutil, argparse, time, os
import pandas as pd
from src.data import collate_remove_none, collate_stack_together, worker_init_fn
from src.training import Trainer
from src.model import Encode2Points
from src.data import PointCloudField, IndexField, Shapes3dDataset
from src.utils import load_config, load_pointcloud
from src.eval import MeshEvaluator
from tqdm import tqdm
from pdb import set_trace as st
def main():
parser = argparse.ArgumentParser(description='MNIST toy experiment')
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('--no_cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
parser.add_argument('--iter', type=int, metavar='S', help='the training iteration to be evaluated.')
args = parser.parse_args()
cfg = load_config(args.config, 'configs/default.yaml')
use_cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
data_type = cfg['data']['data_type']
# Shorthands
out_dir = cfg['train']['out_dir']
generation_dir = os.path.join(out_dir, cfg['generation']['generation_dir'])
if cfg['generation'].get('iter', 0)!=0:
generation_dir += '_%04d'%cfg['generation']['iter']
elif args.iter is not None:
generation_dir += '_%04d'%args.iter
print('Evaluate meshes under %s'%generation_dir)
out_file = os.path.join(generation_dir, 'eval_meshes_full.pkl')
out_file_class = os.path.join(generation_dir, 'eval_meshes.csv')
# PYTORCH VERSION > 1.0.0
assert(float(torch.__version__.split('.')[-3]) > 0)
pointcloud_field = PointCloudField(cfg['data']['pointcloud_file'])
fields = {
'pointcloud': pointcloud_field,
'idx': IndexField(),
}
print('Test split: ', cfg['data']['test_split'])
dataset_folder = cfg['data']['path']
dataset = Shapes3dDataset(
dataset_folder, fields,
cfg['data']['test_split'],
categories=cfg['data']['class'], cfg=cfg)
# Loader
test_loader = torch.utils.data.DataLoader(
dataset, batch_size=1, num_workers=0, shuffle=False)
# Evaluator
evaluator = MeshEvaluator(n_points=100000)
eval_dicts = []
print('Evaluating meshes...')
for it, data in enumerate(tqdm(test_loader)):
if data is None:
print('Invalid data.')
continue
mesh_dir = os.path.join(generation_dir, 'meshes')
pointcloud_dir = os.path.join(generation_dir, 'pointcloud')
# Get index etc.
idx = data['idx'].item()
try:
model_dict = dataset.get_model_dict(idx)
except AttributeError:
model_dict = {'model': str(idx), 'category': 'n/a'}
modelname = model_dict['model']
category_id = model_dict['category']
try:
category_name = dataset.metadata[category_id].get('name', 'n/a')
except AttributeError:
category_name = 'n/a'
if category_id != 'n/a':
mesh_dir = os.path.join(mesh_dir, category_id)
pointcloud_dir = os.path.join(pointcloud_dir, category_id)
# Evaluate
pointcloud_tgt = data['pointcloud'].squeeze(0).numpy()
normals_tgt = data['pointcloud.normals'].squeeze(0).numpy()
eval_dict = {
'idx': idx,
'class id': category_id,
'class name': category_name,
'modelname':modelname,
}
eval_dicts.append(eval_dict)
# Evaluate mesh
if cfg['test']['eval_mesh']:
mesh_file = os.path.join(mesh_dir, '%s.off' % modelname)
if os.path.exists(mesh_file):
mesh = trimesh.load(mesh_file, process=False)
eval_dict_mesh = evaluator.eval_mesh(
mesh, pointcloud_tgt, normals_tgt)
for k, v in eval_dict_mesh.items():
eval_dict[k + ' (mesh)'] = v
else:
print('Warning: mesh does not exist: %s' % mesh_file)
# Evaluate point cloud
if cfg['test']['eval_pointcloud']:
pointcloud_file = os.path.join(
pointcloud_dir, '%s.ply' % modelname)
if os.path.exists(pointcloud_file):
pointcloud = load_pointcloud(pointcloud_file).astype(np.float32)
eval_dict_pcl = evaluator.eval_pointcloud(
pointcloud, pointcloud_tgt)
for k, v in eval_dict_pcl.items():
eval_dict[k + ' (pcl)'] = v
else:
print('Warning: pointcloud does not exist: %s'
% pointcloud_file)
# Create pandas dataframe and save
eval_df = pd.DataFrame(eval_dicts)
eval_df.set_index(['idx'], inplace=True)
eval_df.to_pickle(out_file)
# Create CSV file with main statistics
eval_df_class = eval_df.groupby(by=['class name']).mean()
eval_df_class.loc['mean'] = eval_df_class.mean()
eval_df_class.to_csv(out_file_class)
# Print results
print(eval_df_class)
if __name__ == '__main__':
main()