-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathplot_fig2_disagreement.py
142 lines (114 loc) · 5.79 KB
/
plot_fig2_disagreement.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/env python
# -*- coding: utf-8 -*-
""" Script to plot Figure 2, Spearman rank correlation for top 1000 videos in terms of total views and watch time.
Usage: python plot_fig2_disagreement.py
Time: ~2M
"""
import os, sys, operator, platform
from scipy import stats
import matplotlib as mpl
if platform.system() == 'Linux':
mpl.use('Agg') # no UI backend
import matplotlib.pyplot as plt
sys.path.append(os.path.join(os.path.dirname(__file__), '../'))
from utils.helper import Timer
def plot_spearman(ax, view_rank_dict, watch_rank_dict, color, linestyle, label):
cap = 1000
sorted_view_rank = sorted(view_rank_dict.items(), key=operator.itemgetter(1), reverse=True)[:cap]
sorted_watch_rank = sorted(watch_rank_dict.items(), key=operator.itemgetter(1), reverse=True)[:cap]
x_axis = []
y_axis = []
# iterate from 50 to cap+1, with gap 10
for i in range(50, cap+1, 10):
view_set = set([item[0] for item in sorted_view_rank[:i]])
watch_set = set([item[0] for item in sorted_watch_rank[:i]])
union_list = list(view_set.union(watch_set))
view_rank = [view_rank_dict[x] for x in union_list]
watch_rank = [watch_rank_dict[x] for x in union_list]
x_axis.append(i)
y_axis.append(stats.spearmanr(view_rank, watch_rank)[0])
ax.plot(x_axis, y_axis, color=color, linestyle=linestyle, label=label, lw=2)
def plot_scatter(ax, view_rank_dict, watch_rank_dict, color='k', cap=100):
sorted_view_rank = sorted(view_rank_dict.items(), key=operator.itemgetter(1), reverse=True)[:cap]
sorted_watch_rank = sorted(watch_rank_dict.items(), key=operator.itemgetter(1), reverse=True)[:cap]
view_set = set([item[0] for item in sorted_view_rank])
watch_set = set([item[0] for item in sorted_watch_rank])
union_list = list(view_set.union(watch_set))
vid_view_watch_triplet = [(vid, view_rank_dict[vid], watch_rank_dict[vid]) for vid in union_list]
sorted_by_view = [x[0] for x in sorted(vid_view_watch_triplet, key=lambda x: x[1], reverse=True)]
sorted_by_watch = [x[0] for x in sorted(vid_view_watch_triplet, key=lambda x: x[2], reverse=True)]
view_rank = []
watch_rank = []
for vid in union_list:
view_rank.append(sorted_by_view.index(vid) + 1)
watch_rank.append(sorted_by_watch.index(vid) + 1)
print('>>> Spearman correlation:', stats.spearmanr(view_rank, watch_rank))
ax.scatter(view_rank, watch_rank, s=1, c=color)
if __name__ == '__main__':
# == == == == == == == == Part 1: Set up experiment parameters == == == == == == == == #
print('>>> Start to plot Spearman correlation between top views and top watched videos...')
timer = Timer()
timer.start()
num_display_top = 100
total_view_rank_dict = {}
total_watch_rank_dict = {}
music_view_rank_dict = {}
music_watch_rank_dict = {}
news_view_rank_dict = {}
news_watch_rank_dict = {}
# == == == == == == == == Part 2: Load dataset == == == == == == == == #
input_loc = '../data/formatted_tweeted_videos'
for subdir, _, files in os.walk(input_loc):
for f in files:
with open(os.path.join(subdir, f), 'r') as fin:
fin.readline()
for line in fin:
vid, _, _, _, _, _, _, _, view30, watch30, _ = line.rstrip().split('\t', 10)
view30 = float(view30)
watch30 = float(watch30)
total_view_rank_dict[vid] = view30
total_watch_rank_dict[vid] = watch30
if f.startswith('music'):
music_view_rank_dict[vid] = view30
music_watch_rank_dict[vid] = watch30
if f.startswith('news'):
news_view_rank_dict[vid] = view30
news_watch_rank_dict[vid] = watch30
# == == == == == == == == Part 3: Plot figures == == == == == == == == #
plt.figure(figsize=(9, 6))
ax1 = plt.subplot2grid((2, 3), (0, 0), rowspan=2, colspan=2)
ax2 = plt.subplot2grid((2, 3), (0, 2))
ax3 = plt.subplot2grid((2, 3), (1, 2))
# ax1, spearman correlation with various top value
plot_spearman(ax1, total_view_rank_dict, total_watch_rank_dict, color='k', linestyle='-', label='TWEETED VIDEOS')
plot_spearman(ax1, music_view_rank_dict, music_watch_rank_dict, color='r', linestyle='--', label='Music')
plot_spearman(ax1, news_view_rank_dict, news_watch_rank_dict, color='b', linestyle='--', label='News')
ax1.plot([num_display_top, num_display_top], [-1, 1], 'k:')
ax1.set_ylim([-1, 1])
ax1.set_xlabel('top $n$ videos', fontsize=14)
ax1.set_ylabel("Spearman's $\\rho$", fontsize=14)
ax1.set_xticks([100, 300, 500, 700, 900])
ax1.set_yticks([-1.0, -0.5, 0.0, 0.5, 1.0])
ax1.tick_params(axis='both', which='major', labelsize=12)
ax1.legend(loc='lower right', handlelength=1, frameon=False, fontsize=16)
ax1.set_title('(a)', fontsize=16)
# ax2, music, get the rank value
plot_scatter(ax2, music_view_rank_dict, music_watch_rank_dict, 'r', cap=num_display_top)
ax2.set_xticks([0, 50, 100])
ax2.set_yticks([0, 50, 100])
ax2.set_xlabel('total view rank', fontsize=14)
ax2.set_ylabel('total watch rank', fontsize=14)
ax2.set_title(r'(b) Music at $n$=100', fontsize=16)
# ax3, news, get the rank value
plot_scatter(ax3, news_view_rank_dict, news_watch_rank_dict, 'b', cap=num_display_top)
ax3.set_xticks([0, 50, 100, 150])
ax3.set_yticks([0, 50, 100, 150])
ax3.set_xlabel('total view rank', fontsize=14)
ax3.set_ylabel('total watch rank', fontsize=14)
ax3.set_title(r'(c) News at $n$=100', fontsize=16)
timer.stop()
plt.tight_layout()
plt.subplots_adjust()
plt.savefig('../images/fig2_disagreement.pdf', bbox_inches='tight')
if not platform.system() == 'Linux':
plt.show()