-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathenv_lab.py
98 lines (76 loc) · 3.02 KB
/
env_lab.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from __future__ import division
from __future__ import print_function
import numpy as np
import cv2
import deepmind_lab
class EnvLab(object):
def __init__(self, width, height, fps, level):
lab = deepmind_lab.Lab(level, [])
self.env = deepmind_lab.Lab(
level, ["RGB_INTERLACED"],
config = {
"fps": str(fps),
"width": str(width),
"height": str(height)
})
self.env.reset()
import pprint
observation_spec = lab.observation_spec()
print("Observation spec:")
pprint.pprint(observation_spec)
self.action_spec = self.env.action_spec()
print("Action spec:")
pprint.pprint(self.action_spec)
self.indices = {a["name"]: i for i, a in enumerate(self.action_spec)}
self.mins = np.array([a["min"] for a in self.action_spec])
self.maxs = np.array([a["max"] for a in self.action_spec])
self.num_actions = len(self.action_spec)
print(self.num_actions)
self.action = None
def NumActions(self):
return 3 #self.num_actions*2
def Reset(self):
self.env.reset()
def Act(self, action, frame_repeat):
action = self.MapActions(action)
return self.env.step(action, num_steps=frame_repeat)
def IsRunning(self):
return self.env.is_running()
def Observation(self):
obs = self.env.observations()
img = obs["RGB_INTERLACED"]
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
return img
def MapActions(self, action_raw):
self.action = np.zeros([self.num_actions])
if (action_raw == 0):
self.action[self.indices["LOOK_LEFT_RIGHT_PIXELS_PER_FRAME"]] = -25
elif (action_raw == 1):
self.action[self.indices["LOOK_LEFT_RIGHT_PIXELS_PER_FRAME"]] = 25
"""if (action_raw==2):
self.action[self.indices["LOOK_DOWN_UP_PIXELS_PER_FRAME"]] = -25
elif (action_raw==3):
self.action[self.indices["LOOK_DOWN_UP_PIXELS_PER_FRAME"]] = 25
if (action_raw==4):
self.action[self.indices["STRAFE_LEFT_RIGHT"]] = -1
elif (action_raw==5):
self.action[self.indices["STRAFE_LEFT_RIGHT"]] = 1
if (action_raw==6):
self.action[self.indices["MOVE_BACK_FORWARD"]] = -1
el"""
if (action_raw == 2): # 7
self.action[self.indices["MOVE_BACK_FORWARD"]] = 1
# all binary actions need reset
"""if (action_raw==8):
self.action[self.indices["FIRE"]] = 0
elif (action_raw==9):
self.action[self.indices["FIRE"]] = 1
if (action_raw==10):
self.action[self.indices["JUMP"]] = 0
elif (action_raw==11):
self.action[self.indices["JUMP"]] = 1
if (action_raw==12):
self.action[self.indices["CROUCH"]] = 0
elif (action_raw==13):
self.action[self.indices["CROUCH"]] = 1"""
return np.clip(self.action, self.mins, self.maxs).astype(np.intc)