-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
1439 lines (1206 loc) · 47.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os.path
import numpy as np
import scipy.sparse as sp
import torch
import torch.nn.functional as F
import sys
import pickle as pkl
import networkx as nx
import json
from scipy.sparse.linalg import svds,eigsh
from scipy.sparse import csc_matrix
from networkx.algorithms import community as nx_comm
from networkx.readwrite import json_graph
import pdb
import torch.nn as nn
from torch_geometric.datasets import AttributedGraphDataset
import torch_geometric.datasets as pygeo_datasets
import torch_geometric.loader as pygeo_loaders
from torch_geometric.data import Data
from torch_geometric.utils import degree, to_networkx
from torch_geometric.utils import to_scipy_sparse_matrix
# from train_small_graphs import args
sys.setrecursionlimit(99999)
def accuracy(output, labels):
preds = output.max(1)[1].type_as(labels)
correct = preds.eq(labels).double()
correct = correct.sum()
return correct / len(labels)
def normalize(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
rowsum = (rowsum == 0) * 1 + rowsum
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.0
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
return mx
def sys_normalized_adjacency(adj):
adj = sp.coo_matrix(adj)
adj = adj + sp.eye(adj.shape[0])
row_sum = np.array(adj.sum(1))
row_sum = (row_sum == 0) * 1 + row_sum
d_inv_sqrt = np.power(row_sum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.0
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return d_mat_inv_sqrt.dot(adj).dot(d_mat_inv_sqrt).tocoo()
def torch_normalized_adjacency(adj, mode="add_self_loops"):
if mode == "add_self_loops":
adj = adj + torch.eye(adj.shape[0], device=adj.device)
row_sum = adj.sum(1)
row_sum = (row_sum == 0) * 1 + row_sum
d_inv_sqrt = (row_sum**-0.5).flatten()
d_inv_sqrt[torch.isinf(d_inv_sqrt)] = 0.0
d_mat_inv_sqrt = torch.diag(d_inv_sqrt)
norm_adj = d_mat_inv_sqrt @ adj @ d_mat_inv_sqrt
return norm_adj
elif mode == "self_loops_present":
# adj = adj + torch.eye(adj.shape[0], device=adj.device)
row_sum = adj.sum(1)
row_sum = (row_sum == 0) * 1 + row_sum
d_inv_sqrt = (row_sum**-0.5).flatten()
d_inv_sqrt[torch.isinf(d_inv_sqrt)] = 0.0
d_mat_inv_sqrt = torch.diag(d_inv_sqrt)
norm_adj = d_mat_inv_sqrt @ adj @ d_mat_inv_sqrt
return norm_adj
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64)
)
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
def add_noisy_edges(adj, noise_level=0.1):
noise_level = noise_level * 10
np.random.seed(0)
adj = sp.coo_matrix(adj)
# create noisy matrix
noise = np.random.rand(adj.shape[0], adj.shape[1])
noise = (noise < noise_level).astype(np.float)
# mask out noise on current edges and diagonal
mask = np.ones(adj.shape)
mask[adj.row, adj.col] = 0
mask[np.arange(len(mask)), np.arange(len(mask))] = 0
noise = noise * mask
noisy_adj = adj + noise
noisy_adj = sp.csr_matrix(noisy_adj)
# print('noise level:', noisy_adj.sum() / adj.sum())
return noisy_adj
def parse_index_file(filename):
"""Parse index file."""
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
# adapted from tkipf/gcn
def load_citation(dataset_str, root, normalize_adj=False, noise=0.0):
"""
Load Citation Networks Datasets.
"""
names = ["x", "y", "tx", "ty", "allx", "ally", "graph"]
objects = []
datadir = os.path.join(root, "data")
for i in range(len(names)):
with open(
os.path.join(datadir, "ind.{}.{}".format(dataset_str.lower(), names[i])),
"rb",
) as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding="latin1"))
else:
objects.append(pkl.load(f))
x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file("data/ind.{}.test.index".format(dataset_str))
test_idx_range = np.sort(test_idx_reorder)
if dataset_str == "citeseer":
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder) + 1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range - min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range - min(test_idx_range), :] = ty
ty = ty_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :]
idx_test = test_idx_range.tolist()
idx_train = range(len(y))
idx_val = range(len(y), len(y) + 500)
features = normalize(features)
# porting to pytorch
features = torch.FloatTensor(np.array(features.todense())).float()
labels = torch.LongTensor(labels)
labels = torch.max(labels, dim=1)[1]
idx_train = torch.LongTensor(idx_train)
idx_val = torch.LongTensor(idx_val)
idx_test = torch.LongTensor(idx_test)
# zero out self loops if there are any (these will be added in the network)
adj.setdiag(np.zeros(adj.shape[0]), k=0)
assert adj.diagonal().sum() == 0
# add noise (optional)
if noise > 0.0:
adj = add_noisy_edges(adj, noise_level=noise)
# normalize adjacency if not using DGG
if normalize_adj:
adj = sys_normalized_adjacency(adj) # adds self loops and normalises
adj = sparse_mx_to_torch_sparse_tensor(adj)
# norm_adj = sys_normalized_adjacency(adj) # adds self loops and normalises
# norm_adj = sparse_mx_to_torch_sparse_tensor(norm_adj)
#
#
# norm_adj_gcn = normalize_adj_gcn(adj.to_dense())
# norm_norm_adj_gcn = normalize_adj_gcn(norm_adj.to_dense())
return adj, features, labels, idx_train, idx_val, idx_test
def normalize_adj_gcn(A):
# add self loops
A_hat = A + torch.eye(A.size(0))
D = torch.diag(torch.sum(A_hat, 1))
D = D.inverse().sqrt()
A_hat = torch.mm(torch.mm(D, A_hat), D)
return A_hat
# adapted from PetarV/GAT
def run_dfs(adj, msk, u, ind, nb_nodes):
if msk[u] == -1:
msk[u] = ind
# for v in range(nb_nodes):
for v in adj[u, :].nonzero()[1]:
# if adj[u,v]== 1:
run_dfs(adj, msk, v, ind, nb_nodes)
def dfs_split(adj):
# Assume adj is of shape [nb_nodes, nb_nodes]
nb_nodes = adj.shape[0]
ret = np.full(nb_nodes, -1, dtype=np.int32)
graph_id = 0
for i in range(nb_nodes):
if ret[i] == -1:
run_dfs(adj, ret, i, graph_id, nb_nodes)
graph_id += 1
return ret
def test(adj, mapping):
nb_nodes = adj.shape[0]
for i in range(nb_nodes):
# for j in range(nb_nodes):
for j in adj[i, :].nonzero()[1]:
if mapping[i] != mapping[j]:
# if adj[i,j] == 1:
return False
return True
def find_split(adj, mapping, ds_label):
nb_nodes = adj.shape[0]
dict_splits = {}
for i in range(nb_nodes):
# for j in range(nb_nodes):
for j in adj[i, :].nonzero()[1]:
if mapping[i] == 0 or mapping[j] == 0:
dict_splits[0] = None
elif mapping[i] == mapping[j]:
if (
ds_label[i]["val"] == ds_label[j]["val"]
and ds_label[i]["test"] == ds_label[j]["test"]
):
if mapping[i] not in dict_splits.keys():
if ds_label[i]["val"]:
dict_splits[mapping[i]] = "val"
elif ds_label[i]["test"]:
dict_splits[mapping[i]] = "test"
else:
dict_splits[mapping[i]] = "train"
else:
if ds_label[i]["test"]:
ind_label = "test"
elif ds_label[i]["val"]:
ind_label = "val"
else:
ind_label = "train"
if dict_splits[mapping[i]] != ind_label:
print("inconsistent labels within a graph exiting!!!")
return None
else:
print("label of both nodes different, exiting!!")
return None
return dict_splits
def load_ppi(normalize_adj=True):
print("Loading G...")
with open("ppi/ppi-G.json") as jsonfile:
g_data = json.load(jsonfile)
# print (len(g_data))
G = json_graph.node_link_graph(g_data)
# Extracting adjacency matrix
adj = nx.adjacency_matrix(G)
prev_key = ""
for key, value in g_data.items():
if prev_key != key:
# print (key)
prev_key = key
# print ('Loading id_map...')
with open("ppi/ppi-id_map.json") as jsonfile:
id_map = json.load(jsonfile)
# print (len(id_map))
id_map = {int(k): int(v) for k, v in id_map.items()}
for key, value in id_map.items():
id_map[key] = [value]
# print (len(id_map))
print("Loading features...")
features_ = np.load("ppi/ppi-feats.npy")
# print (features_.shape)
# standarizing features
from sklearn.preprocessing import StandardScaler
train_ids = np.array(
[
id_map[n]
for n in G.nodes()
if not G.nodes[n]["val"] and not G.nodes[n]["test"]
]
)
train_feats = features_[train_ids[:, 0]]
scaler = StandardScaler()
scaler.fit(train_feats)
features_ = scaler.transform(features_)
features = sp.csr_matrix(features_).tolil()
print("Loading class_map...")
class_map = {}
with open("ppi/ppi-class_map.json") as jsonfile:
class_map = json.load(jsonfile)
# print (len(class_map))
# pdb.set_trace()
# Split graph into sub-graphs
# print ('Splitting graph...')
splits = dfs_split(adj)
# Rearrange sub-graph index and append sub-graphs with 1 or 2 nodes to bigger sub-graphs
# print ('Re-arranging sub-graph IDs...')
list_splits = splits.tolist()
group_inc = 1
for i in range(np.max(list_splits) + 1):
if list_splits.count(i) >= 3:
splits[np.array(list_splits) == i] = group_inc
group_inc += 1
else:
# splits[np.array(list_splits) == i] = 0
ind_nodes = np.argwhere(np.array(list_splits) == i)
ind_nodes = ind_nodes[:, 0].tolist()
split = None
for ind_node in ind_nodes:
if g_data["nodes"][ind_node]["val"]:
if split is None or split == "val":
splits[np.array(list_splits) == i] = 21
split = "val"
else:
raise ValueError(
"new node is VAL but previously was {}".format(split)
)
elif g_data["nodes"][ind_node]["test"]:
if split is None or split == "test":
splits[np.array(list_splits) == i] = 23
split = "test"
else:
raise ValueError(
"new node is TEST but previously was {}".format(split)
)
else:
if split is None or split == "train":
splits[np.array(list_splits) == i] = 1
split = "train"
else:
pdb.set_trace()
raise ValueError(
"new node is TRAIN but previously was {}".format(split)
)
# counting number of nodes per sub-graph
list_splits = splits.tolist()
nodes_per_graph = []
for i in range(1, np.max(list_splits) + 1):
nodes_per_graph.append(list_splits.count(i))
# Splitting adj matrix into sub-graphs
subgraph_nodes = np.max(nodes_per_graph)
adj_sub = np.empty((len(nodes_per_graph), subgraph_nodes, subgraph_nodes))
feat_sub = np.empty((len(nodes_per_graph), subgraph_nodes, features.shape[1]))
labels_sub = np.empty((len(nodes_per_graph), subgraph_nodes, 121))
for i in range(1, np.max(list_splits) + 1):
# Creating same size sub-graphs
indexes = np.where(splits == i)[0]
subgraph_ = adj[indexes, :][:, indexes]
if subgraph_.shape[0] < subgraph_nodes or subgraph_.shape[1] < subgraph_nodes:
subgraph = np.identity(subgraph_nodes)
feats = np.zeros([subgraph_nodes, features.shape[1]])
labels = np.zeros([subgraph_nodes, 121])
# adj
subgraph = sp.csr_matrix(subgraph).tolil()
subgraph[0 : subgraph_.shape[0], 0 : subgraph_.shape[1]] = subgraph_
adj_sub[i - 1, :, :] = subgraph.todense()
# feats
feats[0 : len(indexes)] = features[indexes, :].todense()
feat_sub[i - 1, :, :] = feats
# labels
for j, node in enumerate(indexes):
labels[j, :] = np.array(class_map[str(node)])
labels[indexes.shape[0] : subgraph_nodes, :] = np.zeros([121])
labels_sub[i - 1, :, :] = labels
else:
adj_sub[i - 1, :, :] = subgraph_.todense()
feat_sub[i - 1, :, :] = features[indexes, :].todense()
for j, node in enumerate(indexes):
labels[j, :] = np.array(class_map[str(node)])
labels_sub[i - 1, :, :] = labels
# Get relation between id sub-graph and tran,val or test set
dict_splits = find_split(adj, splits, g_data["nodes"])
# Testing if sub graphs are isolated
# print ('Are sub-graphs isolated?')
# print (test(adj, splits))
# Splitting tensors into train,val and test
train_split = []
val_split = []
test_split = []
for key, value in dict_splits.items():
if dict_splits[key] == "train":
train_split.append(int(key) - 1)
elif dict_splits[key] == "val":
val_split.append(int(key) - 1)
elif dict_splits[key] == "test":
test_split.append(int(key) - 1)
train_adj = adj_sub[train_split, :, :]
val_adj = adj_sub[val_split, :, :]
test_adj = adj_sub[test_split, :, :]
train_feat = feat_sub[train_split, :, :]
val_feat = feat_sub[val_split, :, :]
test_feat = feat_sub[test_split, :, :]
train_labels = labels_sub[train_split, :, :]
val_labels = labels_sub[val_split, :, :]
test_labels = labels_sub[test_split, :, :]
train_nodes = np.array(nodes_per_graph[train_split[0] : train_split[-1] + 1])
val_nodes = np.array(nodes_per_graph[val_split[0] : val_split[-1] + 1])
test_nodes = np.array(nodes_per_graph[test_split[0] : test_split[-1] + 1])
# Masks with ones
tr_msk = np.zeros(
(len(nodes_per_graph[train_split[0] : train_split[-1] + 1]), subgraph_nodes)
)
vl_msk = np.zeros(
(len(nodes_per_graph[val_split[0] : val_split[-1] + 1]), subgraph_nodes)
)
ts_msk = np.zeros(
(len(nodes_per_graph[test_split[0] : test_split[-1] + 1]), subgraph_nodes)
)
for i in range(len(train_nodes)):
for j in range(train_nodes[i]):
tr_msk[i][j] = 1
for i in range(len(val_nodes)):
for j in range(val_nodes[i]):
vl_msk[i][j] = 1
for i in range(len(test_nodes)):
for j in range(test_nodes[i]):
ts_msk[i][j] = 1
train_adj_list = []
val_adj_list = []
test_adj_list = []
for i in range(train_adj.shape[0]):
adj = sp.coo_matrix(train_adj[i])
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
if normalize_adj:
adj = sys_normalized_adjacency(adj)
# tmp = sys_normalized_adjacency(adj)
train_adj_list.append(sparse_mx_to_torch_sparse_tensor(adj))
for i in range(val_adj.shape[0]):
adj = sp.coo_matrix(val_adj[i])
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
if normalize_adj:
adj = sys_normalized_adjacency(adj)
val_adj_list.append(sparse_mx_to_torch_sparse_tensor(adj))
adj = sp.coo_matrix(test_adj[i])
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
if normalize_adj:
adj = sys_normalized_adjacency(adj)
test_adj_list.append(sparse_mx_to_torch_sparse_tensor(adj))
train_feat = torch.FloatTensor(train_feat)
val_feat = torch.FloatTensor(val_feat)
test_feat = torch.FloatTensor(test_feat)
train_labels = torch.FloatTensor(train_labels)
val_labels = torch.FloatTensor(val_labels)
test_labels = torch.FloatTensor(test_labels)
tr_msk = torch.LongTensor(tr_msk)
vl_msk = torch.LongTensor(vl_msk)
ts_msk = torch.LongTensor(ts_msk)
# save_fn = '/vol/research/sceneEvolution/models/GCNII/' \
# 'ppi/ppi_data_adj_norm{}.pt'.format(str(normalize_adj))
# torch.save(
# {
# 'train_adj_list': train_adj_list,
# 'val_adj_list': val_adj_list,
# 'test_adj_list': test_adj_list,
# 'train_feat': train_feat,
# 'val_feat': val_feat,
# 'test_feat': test_feat,
# 'train_labels': train_labels,
# 'val_labels': val_labels,
# 'test_labels': test_labels,
# 'train_nodes': train_nodes,
# 'val_nodes': val_nodes,
# 'test_nodes': test_nodes,
# },
# save_fn
# )
# exit()
return (
train_adj_list,
val_adj_list,
test_adj_list,
train_feat,
val_feat,
test_feat,
train_labels,
val_labels,
test_labels,
train_nodes,
val_nodes,
test_nodes,
)
def load_ppi_from_disk(normalize_adj=True):
fn = (
"/vol/research/sceneEvolution/models/GCNII/"
"ppi/ppi_data_adj_norm{}.pt".format(str(normalize_adj))
)
data = torch.load(fn)
train_adj_list = data["train_adj_list"]
val_adj_list = data["val_adj_list"]
test_adj_list = data["test_adj_list"]
train_feat = data["train_feat"]
val_feat = data["val_feat"]
test_feat = data["test_feat"]
train_labels = data["train_labels"]
val_labels = data["val_labels"]
test_labels = data["test_labels"]
train_nodes = data["train_nodes"]
val_nodes = data["val_nodes"]
test_nodes = data["test_nodes"]
return (
train_adj_list,
val_adj_list,
test_adj_list,
train_feat,
val_feat,
test_feat,
train_labels,
val_labels,
test_labels,
train_nodes,
val_nodes,
test_nodes,
)
def load_reddit_example(path):
# dataset = AttributedGraphDataset(root=root, name=name)
# print('wait')
import copy
import os.path as osp
import torch
import torch.nn.functional as F
from tqdm import tqdm
from torch_geometric.datasets import Reddit
from torch_geometric.loader import NeighborLoader
from torch_geometric.nn import SAGEConv
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dataset = Reddit(path)
# Already send node features/labels to GPU for faster access during sampling:
data = dataset[0].to(device, "x", "y")
kwargs = {"batch_size": 1024, "num_workers": 6, "persistent_workers": True}
train_loader = NeighborLoader(
data,
input_nodes=data.train_mask,
num_neighbors=[25, 10],
shuffle=True,
**kwargs,
)
subgraph_loader = NeighborLoader(
copy.copy(data), input_nodes=None, num_neighbors=[-1], shuffle=False, **kwargs
)
# No need to maintain these features during evaluation:
del subgraph_loader.data.x, subgraph_loader.data.y
# Add global node index information.
subgraph_loader.data.num_nodes = data.num_nodes
subgraph_loader.data.n_id = torch.arange(data.num_nodes)
class SAGE(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels):
super().__init__()
self.convs = torch.nn.ModuleList()
self.convs.append(SAGEConv(in_channels, hidden_channels))
self.convs.append(SAGEConv(hidden_channels, out_channels))
def forward(self, x, edge_index):
for i, conv in enumerate(self.convs):
x = conv(x, edge_index)
if i < len(self.convs) - 1:
x = x.relu_()
x = F.dropout(x, p=0.5, training=self.training)
return x
@torch.no_grad()
def inference(self, x_all, subgraph_loader):
pbar = tqdm(total=len(subgraph_loader.dataset) * len(self.convs))
pbar.set_description("Evaluating")
# Compute representations of nodes layer by layer, using *all*
# available edges. This leads to faster computation in contrast to
# immediately computing the final representations of each batch:
for i, conv in enumerate(self.convs):
xs = []
for batch in subgraph_loader:
print(batch.n_id)
x = x_all[batch.n_id.to(x_all.device)].to(device)
x = conv(x, batch.edge_index.to(device))
if i < len(self.convs) - 1:
x = x.relu_()
xs.append(x[: batch.batch_size].cpu())
pbar.update(batch.batch_size)
x_all = torch.cat(xs, dim=0)
pbar.close()
return x_all
model = SAGE(dataset.num_features, 256, dataset.num_classes).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
def train(epoch):
model.train()
pbar = tqdm(total=int(len(train_loader.dataset)))
pbar.set_description(f"Epoch {epoch:02d}")
total_loss = total_correct = total_examples = 0
for batch in train_loader:
optimizer.zero_grad()
y = batch.y[: batch.batch_size]
y_hat = model(batch.x, batch.edge_index.to(device))[: batch.batch_size]
loss = F.cross_entropy(y_hat, y)
loss.backward()
optimizer.step()
total_loss += float(loss) * batch.batch_size
total_correct += int((y_hat.argmax(dim=-1) == y).sum())
total_examples += batch.batch_size
pbar.update(batch.batch_size)
pbar.close()
return total_loss / total_examples, total_correct / total_examples
@torch.no_grad()
def test():
model.eval()
y_hat = model.inference(data.x, subgraph_loader).argmax(dim=-1)
y = data.y.to(y_hat.device)
accs = []
for mask in [data.train_mask, data.val_mask, data.test_mask]:
accs.append(int((y_hat[mask] == y[mask]).sum()) / int(mask.sum()))
return accs
for epoch in range(1, 11):
loss, acc = train(epoch)
print(f"Epoch {epoch:02d}, Loss: {loss:.4f}, Approx. Train: {acc:.4f}")
train_acc, val_acc, test_acc = test()
print(
f"Epoch: {epoch:02d}, Train: {train_acc:.4f}, Val: {val_acc:.4f}, "
f"Test: {test_acc:.4f}"
)
def load_graphsaint_example():
import argparse
import os.path as osp
import torch
import torch.nn.functional as F
from torch_geometric.datasets import Flickr
from torch_geometric.loader import GraphSAINTRandomWalkSampler
from torch_geometric.nn import GraphConv
from torch_geometric.utils import degree
# path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'Flickr')
path = "/vol/research/sceneEvolution/data/graph_data/Flickr"
print(path)
dataset = Flickr(path)
data = dataset[0]
row, col = data.edge_index
data.edge_weight = 1.0 / degree(col, data.num_nodes)[col] # Norm by in-degree.
parser = argparse.ArgumentParser()
parser.add_argument("--use_normalization", action="store_true")
args = parser.parse_args()
args.use_normalization = False
loader = GraphSAINTRandomWalkSampler(
data,
batch_size=3000,
walk_length=2,
num_steps=5,
sample_coverage=100,
save_dir=dataset.processed_dir,
num_workers=4,
)
class Net(torch.nn.Module):
def __init__(self, hidden_channels):
super().__init__()
in_channels = dataset.num_node_features
out_channels = dataset.num_classes
self.conv1 = GraphConv(in_channels, hidden_channels)
self.conv2 = GraphConv(hidden_channels, hidden_channels)
self.conv3 = GraphConv(hidden_channels, hidden_channels)
self.lin = torch.nn.Linear(3 * hidden_channels, out_channels)
def set_aggr(self, aggr):
self.conv1.aggr = aggr
self.conv2.aggr = aggr
self.conv3.aggr = aggr
def forward(self, x0, edge_index, edge_weight=None):
x1 = F.relu(self.conv1(x0, edge_index, edge_weight))
x1 = F.dropout(x1, p=0.2, training=self.training)
x2 = F.relu(self.conv2(x1, edge_index, edge_weight))
x2 = F.dropout(x2, p=0.2, training=self.training)
x3 = F.relu(self.conv3(x2, edge_index, edge_weight))
x3 = F.dropout(x3, p=0.2, training=self.training)
x = torch.cat([x1, x2, x3], dim=-1)
x = self.lin(x)
return x.log_softmax(dim=-1)
class GCNConv(nn.Module):
def __init__(self, in_channels, out_channels, A=None, cached=False):
super(GCNConv, self).__init__()
self.W = nn.Parameter(
torch.rand(in_channels, out_channels, requires_grad=True)
)
def forward(self, x, adj):
Ax = torch.mm(adj, x)
# print('Ax mu: {:.3f} std: {:.3f}'.format(Ax.mean().item(), Ax.std().item()),)
AxW = torch.mm(Ax, self.W)
# print('AxW mu: {:.3f} std: {:.3f}'.format(AxW.mean().item(), AxW.std().item()), )
out = torch.relu(AxW)
return out
class GCN(torch.nn.Module):
def __init__(self, nfeat=32, nlayers=None, nhidden=32, nclass=10, **kwargs):
super(GCN, self).__init__()
self.conv1 = GCNConv(nfeat, nhidden)
self.conv2 = GCNConv(nhidden, nclass)
self.params1 = list(self.conv1.parameters())
self.params2 = list(self.conv2.parameters())
def normalize_adj(self, A):
# assert no self loops
assert A[torch.arange(len(A)), torch.arange(len(A))].sum() == 0
# add self loops
A_hat = A + torch.eye(A.size(0), device=A.device)
D = torch.diag(torch.sum(A_hat, 1))
D = D.inverse().sqrt()
A_hat = torch.mm(torch.mm(D, A_hat), D)
return A_hat
def forward(self, x, edge_index):
adj = to_scipy_sparse_matrix(edge_index=edge_index, num_nodes=len(x))
adj = sparse_mx_to_torch_sparse_tensor(adj).to(device)
adj = adj.to_dense()
adj = self.normalize_adj(adj)
x = F.dropout(self.conv1(x, adj), training=self.training)
x = self.conv2(x, adj)
out = F.log_softmax(x, dim=-1)
return out
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model = Net(hidden_channels=256).to(device)
model = GCN(
nfeat=dataset.num_node_features, nhidden=64, nclass=dataset.num_classes
).to(device)
# optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
optimizer = torch.optim.Adam(
[
dict(params=model.params1, weight_decay=5e-4),
dict(params=model.params2, weight_decay=0),
],
lr=0.01,
) # Only perform weight-decay on first convolution.
def train():
model.train()
# model.set_aggr('add' if args.use_normalization else 'mean')
total_loss = total_examples = 0
for data in loader:
data = data.to(device)
optimizer.zero_grad()
if args.use_normalization:
edge_weight = data.edge_norm * data.edge_weight
out = model(data.x, data.edge_index, edge_weight)
loss = F.nll_loss(out, data.y, reduction="none")
loss = (loss * data.node_norm)[data.train_mask].sum()
else:
out = model(data.x, data.edge_index)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
total_loss += loss.item() * data.num_nodes
total_examples += data.num_nodes
return total_loss / total_examples
@torch.no_grad()
def test():
model.eval()
# model.set_aggr('mean')
total_train_acc = total_val_acc = total_test_acc = total_examples = 0
for data in loader:
out = model(data.x.to(device), data.edge_index.to(device))
pred = out.argmax(dim=-1)
correct = pred.eq(data.y.to(device))
total_train_acc += (
correct[data["train_mask"]].sum().item()
/ data["train_mask"].sum().item()
* data.num_nodes
)
total_val_acc += (
correct[data["val_mask"]].sum().item()
/ data["val_mask"].sum().item()
* data.num_nodes
)
total_test_acc += (
correct[data["test_mask"]].sum().item()
/ data["test_mask"].sum().item()
* data.num_nodes
)
total_examples += data.num_nodes
# print(correct[data['train_mask']].sum().item() \
# / data['train_mask'].sum().item())
# print(correct[data['val_mask']].sum().item() \
# / data['val_mask'].sum().item())
# print(correct[data['test_mask']].sum().item() \
# / data['test_mask'].sum().item())
train_acc = total_train_acc / total_examples
val_acc = total_val_acc / total_examples
test_acc = total_test_acc / total_examples
return [train_acc, val_acc, test_acc]
@torch.no_grad()
def test_og():
model.eval()
# model.set_aggr('mean')
print(len(data.x))
out = model(data.x.to(device), data.edge_index.to(device))
pred = out.argmax(dim=-1)
correct = pred.eq(data.y.to(device))
accs = []
for _, mask in data("train_mask", "val_mask", "test_mask"):
accs.append(correct[mask].sum().item() / mask.sum().item())
return accs
print(args.use_normalization)
for epoch in range(1, 51):
loss = train()
accs = test()
print(
f"Epoch: {epoch:02d}, Loss: {loss:.4f}, Train: {accs[0]:.4f}, "
f"Val: {accs[1]:.4f}, Test: {accs[2]:.4f}"
)
def load_clustergcn_reddit(path):
import torch
import torch.nn.functional as F
from torch.nn import ModuleList
from tqdm import tqdm
from torch_geometric.datasets import Reddit
from torch_geometric.loader import ClusterData, ClusterLoader, NeighborSampler
from torch_geometric.nn import SAGEConv
dataset = Reddit(path)
data = dataset[0]
cluster_data = ClusterData(
data, num_parts=500, recursive=False, save_dir=dataset.processed_dir
)
train_loader = ClusterLoader(
cluster_data, batch_size=20, shuffle=True, num_workers=12
)
subgraph_loader = NeighborSampler(
data.edge_index, sizes=[-1], batch_size=1024, shuffle=False, num_workers=12
)
class Net(torch.nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.convs = ModuleList(
[SAGEConv(in_channels, 128), SAGEConv(128, out_channels)]
)
def forward(self, x, edge_index):
for i, conv in enumerate(self.convs):
x = conv(x, edge_index)
if i != len(self.convs) - 1:
x = F.relu(x)
x = F.dropout(x, p=0.5, training=self.training)
return F.log_softmax(x, dim=-1)
def inference(self, x_all):
pbar = tqdm(total=x_all.size(0) * len(self.convs))
pbar.set_description("Evaluating")
# Compute representations of nodes layer by layer, using *all*
# available edges. This leads to faster computation in contrast to
# immediately computing the final representations of each batch.
for i, conv in enumerate(self.convs):
xs = []
for batch_size, n_id, adj in subgraph_loader:
edge_index, _, size = adj.to(device)
x = x_all[n_id].to(device)
x_target = x[: size[1]]
x = conv((x, x_target), edge_index)
if i != len(self.convs) - 1:
x = F.relu(x)
xs.append(x.cpu())
pbar.update(batch_size)
x_all = torch.cat(xs, dim=0)
pbar.close()
return x_all
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Net(dataset.num_features, dataset.num_classes).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.005)
def train():
model.train()
total_loss = total_nodes = 0
for batch in train_loader: