forked from shuboc/LeetCode-2
-
Notifications
You must be signed in to change notification settings - Fork 6
/
3sum.py
45 lines (43 loc) · 1.42 KB
/
3sum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
# Time: O(n^2)
# Space: O(1)
#
# Given an array S of n integers,
# are there elements a, b, c in S such that a + b + c = 0?
# Find all unique triplets in the array which gives the sum of zero.
#
# Note:
# Elements in a triplet (a,b,c) must be in non-descending order. (ie, a <= b <= c)
# The solution set must not contain duplicate triplets.
# For example, given array S = {-1 0 1 2 -1 -4},
#
# A solution set is:
# (-1, 0, 1)
# (-1, -1, 2)
#
class Solution(object):
def threeSum(self, nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
nums, result, i = sorted(nums), [], 0
while i < len(nums) - 2:
if i == 0 or nums[i] != nums[i - 1]:
j, k = i + 1, len(nums) - 1
while j < k:
if nums[i] + nums[j] + nums[k] < 0:
j += 1
elif nums[i] + nums[j] + nums[k] > 0:
k -= 1
else:
result.append([nums[i], nums[j], nums[k]])
j, k = j + 1, k - 1
while j < k and nums[j] == nums[j - 1]:
j += 1
while j < k and nums[k] == nums[k + 1]:
k -= 1
i += 1
return result
if __name__ == '__main__':
result = Solution().threeSum([-1, 0, 1, 2, -1, -4])
print result