This respository contains the code for the all the examples mentioned in the article, How to Run LLMs on Your CPU with Llama.cpp: A Step-by-Step Guide.
A simple example that uses the Zephyr-7B-β LLM for text generation:
import os
import urllib.request
from llama_cpp import Llama
def download_file(file_link, filename):
# Checks if the file already exists before downloading
if not os.path.isfile(filename):
urllib.request.urlretrieve(file_link, filename)
print("File downloaded successfully.")
else:
print("File already exists.")
# Dowloading GGML model from HuggingFace
ggml_model_path = "https://huggingface.co/TheBloke/zephyr-7B-beta-GGUF/resolve/main/zephyr-7b-beta.Q4_0.gguf"
filename = "zephyr-7b-beta.Q4_0.gguf"
download_file(ggml_model_path, filename)
llm = Llama(model_path="zephyr-7b-beta.Q4_0.gguf", n_ctx=512, n_batch=126)
def generate_text(
prompt="Who is the CEO of Apple?",
max_tokens=256,
temperature=0.1,
top_p=0.5,
echo=False,
stop=["#"],
):
output = llm(
prompt,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
echo=echo,
stop=stop,
)
output_text = output["choices"][0]["text"].strip()
return output_text
def generate_prompt_from_template(input):
chat_prompt_template = f"""<|im_start|>system
You are a helpful chatbot.<|im_end|>
<|im_start|>user
{input}<|im_end|>"""
return chat_prompt_template
prompt = generate_prompt_from_template(
"Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural experiences and must-see attractions."
)
generate_text(
prompt,
max_tokens=356,
)