-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathschema_builder.py
298 lines (254 loc) · 10.3 KB
/
schema_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
"""Placeholder docstring"""
from __future__ import absolute_import
import io
import logging
from pathlib import Path
from typing import Callable
import numpy as np
from pandas import DataFrame
from sagemaker.deserializers import (
BaseDeserializer,
BytesDeserializer,
NumpyDeserializer,
JSONDeserializer,
PandasDeserializer,
TorchTensorDeserializer,
StringDeserializer,
)
from sagemaker.serializers import (
DataSerializer,
NumpySerializer,
JSONSerializer,
CSVSerializer,
TorchTensorSerializer,
StringSerializer,
)
from sagemaker.serve.marshalling.custom_payload_translator import CustomPayloadTranslator
from sagemaker.serve.builder.triton_schema_builder import TritonSchemaBuilder
logger = logging.getLogger(__name__)
class JSONSerializerWrapper(JSONSerializer):
"""Wraps the JSONSerializer because it does not convert jsonable to bytes"""
def serialize(self, data) -> bytes:
"""Placeholder docstring"""
return super().serialize(data).encode("utf-8")
class CSVSerializerWrapper(CSVSerializer):
"""Wraps the CSVSerializer because it does not convert dataframe to bytes"""
def serialize(self, data) -> bytes:
"""Placeholder docstring"""
return super().serialize(data).encode("utf-8")
translation_mapping = {
NumpySerializer: NumpyDeserializer,
NumpyDeserializer: NumpySerializer,
JSONSerializerWrapper: JSONDeserializer,
JSONDeserializer: JSONSerializerWrapper,
TorchTensorSerializer: TorchTensorDeserializer,
TorchTensorDeserializer: TorchTensorSerializer,
DataSerializer: BytesDeserializer,
BytesDeserializer: DataSerializer,
CSVSerializerWrapper: PandasDeserializer,
PandasDeserializer: CSVSerializerWrapper,
StringSerializer: StringDeserializer,
StringDeserializer: StringSerializer,
}
class DeserializerWrapper(BaseDeserializer):
"""Wraps the deserializer to comply with the function signature."""
def __init__(self, deserializer, accept):
self._deserializer = deserializer
self._accept = accept
def deserialize(self, stream, content_type: str = None):
"""Deserialize stream into object"""
return self._deserializer.deserialize(
stream,
# We need to overwrite the accept type because model
# servers like XGBOOST always returns "text/html"
self._accept[0],
)
@property
def ACCEPT(self):
"""Placeholder docstring"""
return self._accept[0]
class SchemaBuilder(TritonSchemaBuilder):
"""Automatically detects the serializer and deserializer for your model.
This is done by inspecting the `sample_input` and `sample_output` object.
Alternatively, provide your custom serializer and deserializer
for your request or response by creating a class that inherits
``CustomPayloadTranslator`` and provide it to ``SchemaBuilder``.
Args:
sample_input (object): Sample input to the model which can be used
for testing. The schema builder internally generates the content
type and corresponding serializing functions.
sample_output (object): Sample output to the model which can be
used for testing. The schema builder internally generates
the accept type and corresponding serializing functions.
input_translator (Optional[CustomPayloadTranslator]): If you
want to define your own serialization method for the payload,
you can implement your functions for translation.
output_translator (Optional[CustomPayloadTranslator]): If
you want to define your own serialization method for the output,
you can implement your functions for translation.
"""
def __init__(
self,
sample_input,
sample_output,
input_translator: CustomPayloadTranslator = None,
output_translator: CustomPayloadTranslator = None,
):
super().__init__()
self.sample_input = sample_input
self.sample_output = sample_output
if input_translator:
_validate_translations(
payload=sample_input,
serialize_callable=input_translator.serialize,
deserialize_callable=input_translator.deserialize,
)
self.custom_input_translator = input_translator
else:
self.input_serializer = self._get_serializer(sample_input)
self._input_deserializer = self._get_inverse(self.input_serializer)
self.input_deserializer = DeserializerWrapper(
self._input_deserializer, self._input_deserializer.ACCEPT
)
if output_translator:
_validate_translations(
payload=sample_output,
serialize_callable=output_translator.serialize,
deserialize_callable=output_translator.deserialize,
)
self.custom_output_translator = output_translator
else:
self._output_deserializer = self._get_deserializer(sample_output)
self.output_serializer = self._get_inverse(self._output_deserializer)
self.output_deserializer = DeserializerWrapper(
self._output_deserializer, self._output_deserializer.ACCEPT
)
def _get_serializer(self, obj):
# pylint: disable=too-many-return-statements
"""Placeholder docstring"""
if isinstance(obj, np.ndarray):
return NumpySerializer()
if isinstance(obj, DataFrame):
return CSVSerializerWrapper()
if isinstance(obj, bytes) or _is_path_to_file(obj):
return DataSerializer()
if _is_torch_tensor(obj):
return TorchTensorSerializer()
if isinstance(obj, str):
return StringSerializer()
if _is_jsonable(obj):
return JSONSerializerWrapper()
if isinstance(obj, dict) and "content_type" in obj:
try:
return DataSerializer(content_type=obj["content_type"])
except ValueError as e:
logger.error(e)
raise ValueError(
(
"SchemaBuilder cannot determine the serializer of type %s "
"Please provide your own marshalling code"
"to SchemaBuilder via CustomPayloadTranslator"
)
% type(obj)
)
def _get_deserializer(self, obj):
# pylint: disable=too-many-return-statements
"""Placeholder docstring"""
if isinstance(obj, np.ndarray):
return NumpyDeserializer()
if isinstance(obj, DataFrame):
return PandasDeserializer()
if isinstance(obj, bytes):
return BytesDeserializer()
if _is_torch_tensor(obj):
return TorchTensorDeserializer()
if isinstance(obj, str):
return StringDeserializer()
if _is_jsonable(obj):
return JSONDeserializer()
raise ValueError(
(
"SchemaBuilder cannot determine deserializer of type %s "
"Please provide your own marshalling code"
"to SchemaBuilder via CustomPayloadTranslator"
)
% type(obj)
)
def _get_inverse(self, obj):
"""Placeholder docstring"""
try:
return translation_mapping.get(obj.__class__)()
except KeyError:
raise Exception("Unable to serialize")
def __repr__(self):
"""Placeholder docstring"""
if hasattr(self, "input_serializer") and hasattr(self, "output_serializer"):
return (
f"SchemaBuilder(\n"
f"input_serializer={self.input_serializer}\n"
f"output_serializer={self.output_serializer}\n"
f"input_deserializer={self.input_deserializer._deserializer}\n"
f"output_deserializer={self.output_deserializer._deserializer})"
)
return (
f"SchemaBuilder(\n"
f"custom_input_translator={self.custom_input_translator}\n"
f"custom_output_translator={self.custom_output_translator}\n"
)
def generate_marshalling_map(self) -> dict:
"""Generate marshalling map for the schema builder"""
return {
"input_serializer": (
self.input_serializer.__class__.__name__
if hasattr(self, "input_serializer")
else None
),
"output_serializer": (
self.output_serializer.__class__.__name__
if hasattr(self, "output_serializer")
else None
),
"input_deserializer": (
self._input_deserializer.__class__.__name__
if hasattr(self, "_input_deserializer")
else None
),
"output_deserializer": (
self._output_deserializer.__class__.__name__
if hasattr(self, "_output_deserializer")
else None
),
"custom_input_translator": hasattr(self, "custom_input_translator"),
"custom_output_translator": hasattr(self, "custom_output_translator"),
}
def get_input_sample(self) -> object:
"""Get input sample for the schema builder"""
return self.sample_input
def _is_torch_tensor(data: object) -> bool:
"""Placeholder docstring"""
try:
from torch import Tensor
return isinstance(data, Tensor)
except ModuleNotFoundError:
return False
def _is_jsonable(data: object) -> bool:
# pylint: disable=broad-except
"""Placeholder docstring"""
try:
JSONSerializerWrapper().serialize(data)
return True
except Exception:
return False
def _is_path_to_file(data: object) -> bool:
"""Placeholder docstring"""
return isinstance(data, str) and Path(data).resolve().is_file()
def _validate_translations(
payload: object, serialize_callable: Callable, deserialize_callable: Callable
) -> None:
"""Placeholder docstring"""
try:
b = serialize_callable(payload=payload, content_type="application/custom")
stream = io.BytesIO(b)
deserialize_callable(stream=stream, content_type="application/custom")
except Exception as e:
raise ValueError("Error when validating payload serialization and deserialization.", e)