-
Notifications
You must be signed in to change notification settings - Fork 418
/
Copy pathbase.py
647 lines (530 loc) · 23.2 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
"""
Metrics utility
!!! abstract "Usage Documentation"
[`Metrics`](../../core/metrics.md)
"""
from __future__ import annotations
import datetime
import functools
import json
import logging
import numbers
import os
import warnings
from collections import defaultdict
from contextlib import contextmanager
from typing import TYPE_CHECKING, Any, Callable, Generator
from aws_lambda_powertools.metrics.exceptions import (
MetricResolutionError,
MetricUnitError,
MetricValueError,
SchemaValidationError,
)
from aws_lambda_powertools.metrics.functions import convert_timestamp_to_emf_format, validate_emf_timestamp
from aws_lambda_powertools.metrics.provider import cold_start
from aws_lambda_powertools.metrics.provider.cloudwatch_emf.constants import MAX_DIMENSIONS, MAX_METRICS
from aws_lambda_powertools.metrics.provider.cloudwatch_emf.metric_properties import MetricResolution, MetricUnit
from aws_lambda_powertools.metrics.provider.cold_start import (
reset_cold_start_flag, # noqa: F401 # backwards compatibility
)
from aws_lambda_powertools.shared import constants
from aws_lambda_powertools.shared.functions import resolve_env_var_choice
if TYPE_CHECKING:
from aws_lambda_powertools.metrics.types import MetricNameUnitResolution
logger = logging.getLogger(__name__)
# Maintenance: alias due to Hyrum's law
is_cold_start = cold_start.is_cold_start
class MetricManager:
"""Base class for metric functionality (namespace, metric, dimension, serialization)
MetricManager creates metrics asynchronously thanks to CloudWatch Embedded Metric Format (EMF).
CloudWatch EMF can create up to 100 metrics per EMF object
and metrics, dimensions, and namespace created via MetricManager
will adhere to the schema, will be serialized and validated against EMF Schema.
**Use `aws_lambda_powertools.metrics.metrics.Metrics` or
`aws_lambda_powertools.metrics.metric.single_metric` to create EMF metrics.**
Environment variables
---------------------
POWERTOOLS_METRICS_NAMESPACE : str
metric namespace to be set for all metrics
POWERTOOLS_SERVICE_NAME : str
service name used for default dimension
Raises
------
MetricUnitError
When metric unit isn't supported by CloudWatch
MetricResolutionError
When metric resolution isn't supported by CloudWatch
MetricValueError
When metric value isn't a number
SchemaValidationError
When metric object fails EMF schema validation
"""
def __init__(
self,
metric_set: dict[str, Any] | None = None,
dimension_set: dict | None = None,
namespace: str | None = None,
metadata_set: dict[str, Any] | None = None,
service: str | None = None,
):
self.metric_set = metric_set if metric_set is not None else {}
self.dimension_set = dimension_set if dimension_set is not None else {}
self.namespace = resolve_env_var_choice(choice=namespace, env=os.getenv(constants.METRICS_NAMESPACE_ENV))
self.service = resolve_env_var_choice(choice=service, env=os.getenv(constants.SERVICE_NAME_ENV))
self.metadata_set = metadata_set if metadata_set is not None else {}
self.timestamp: int | None = None
self._metric_units = [unit.value for unit in MetricUnit]
self._metric_unit_valid_options = list(MetricUnit.__members__)
self._metric_resolutions = [resolution.value for resolution in MetricResolution]
def add_metric(
self,
name: str,
unit: MetricUnit | str,
value: float,
resolution: MetricResolution | int = 60,
) -> None:
"""Adds given metric
Example
-------
**Add given metric using MetricUnit enum**
metric.add_metric(name="BookingConfirmation", unit=MetricUnit.Count, value=1)
**Add given metric using plain string as value unit**
metric.add_metric(name="BookingConfirmation", unit="Count", value=1)
**Add given metric with MetricResolution non default value**
metric.add_metric(name="BookingConfirmation", unit="Count", value=1, resolution=MetricResolution.High)
Parameters
----------
name : str
Metric name
unit : MetricUnit | str
`aws_lambda_powertools.helper.models.MetricUnit`
value : float
Metric value
resolution : MetricResolution | int
`aws_lambda_powertools.helper.models.MetricResolution`
Raises
------
MetricUnitError
When metric unit is not supported by CloudWatch
MetricResolutionError
When metric resolution is not supported by CloudWatch
"""
if not isinstance(value, numbers.Number):
raise MetricValueError(f"{value} is not a valid number")
unit = self._extract_metric_unit_value(unit=unit)
resolution = self._extract_metric_resolution_value(resolution=resolution)
metric: dict = self.metric_set.get(name, defaultdict(list))
metric["Unit"] = unit
metric["StorageResolution"] = resolution
metric["Value"].append(float(value))
logger.debug(f"Adding metric: {name} with {metric}")
self.metric_set[name] = metric
if len(self.metric_set) == MAX_METRICS or len(metric["Value"]) == MAX_METRICS:
logger.debug(f"Exceeded maximum of {MAX_METRICS} metrics - Publishing existing metric set")
metrics = self.serialize_metric_set()
print(json.dumps(metrics))
# clear metric set only as opposed to metrics and dimensions set
# since we could have more than 100 metrics
self.metric_set.clear()
def serialize_metric_set(
self,
metrics: dict | None = None,
dimensions: dict | None = None,
metadata: dict | None = None,
) -> dict:
"""Serializes metric and dimensions set
Parameters
----------
metrics : dict, optional
Dictionary of metrics to serialize, by default None
dimensions : dict, optional
Dictionary of dimensions to serialize, by default None
metadata: dict, optional
Dictionary of metadata to serialize, by default None
Example
-------
**Serialize metrics into EMF format**
metrics = MetricManager()
# ...add metrics, dimensions, namespace
ret = metrics.serialize_metric_set()
Returns
-------
dict
Serialized metrics following EMF specification
Raises
------
SchemaValidationError
Raised when serialization fail schema validation
"""
if metrics is None: # pragma: no cover
metrics = self.metric_set
if dimensions is None: # pragma: no cover
dimensions = self.dimension_set
if metadata is None: # pragma: no cover
metadata = self.metadata_set
if self.service and not self.dimension_set.get("service"):
# self.service won't be a float
self.add_dimension(name="service", value=self.service)
if len(metrics) == 0:
raise SchemaValidationError("Must contain at least one metric.")
if self.namespace is None:
raise SchemaValidationError("Must contain a metric namespace.")
logger.debug({"details": "Serializing metrics", "metrics": metrics, "dimensions": dimensions})
# For standard resolution metrics, don't add StorageResolution field to avoid unnecessary ingestion of data into cloudwatch # noqa E501
# Example: [ { "Name": "metric_name", "Unit": "Count"} ] # noqa ERA001
#
# In case using high-resolution metrics, add StorageResolution field
# Example: [ { "Name": "metric_name", "Unit": "Count", "StorageResolution": 1 } ] # noqa ERA001
metric_definition: list[MetricNameUnitResolution] = []
metric_names_and_values: dict[str, float] = {} # { "metric_name": 1.0 }
for metric_name in metrics:
metric: dict = metrics[metric_name]
metric_value: int = metric.get("Value", 0)
metric_unit: str = metric.get("Unit", "")
metric_resolution: int = metric.get("StorageResolution", 60)
metric_definition_data: MetricNameUnitResolution = {"Name": metric_name, "Unit": metric_unit}
# high-resolution metrics
if metric_resolution == 1:
metric_definition_data["StorageResolution"] = metric_resolution
metric_definition.append(metric_definition_data)
metric_names_and_values.update({metric_name: metric_value})
return {
"_aws": {
"Timestamp": self.timestamp or int(datetime.datetime.now().timestamp() * 1000), # epoch
"CloudWatchMetrics": [
{
"Namespace": self.namespace, # "test_namespace"
"Dimensions": [list(dimensions.keys())], # [ "service" ]
"Metrics": metric_definition,
},
],
},
**dimensions, # "service": "test_service"
**metadata, # "username": "test"
**metric_names_and_values, # "single_metric": 1.0
}
def add_dimension(self, name: str, value: str) -> None:
"""Adds given dimension to all metrics
Example
-------
**Add a metric dimensions**
metric.add_dimension(name="operation", value="confirm_booking")
Parameters
----------
name : str
Dimension name
value : str
Dimension value
"""
logger.debug(f"Adding dimension: {name}:{value}")
if len(self.dimension_set) == MAX_DIMENSIONS:
raise SchemaValidationError(
f"Maximum number of dimensions exceeded ({MAX_DIMENSIONS}): Unable to add dimension {name}.",
)
# Cast value to str according to EMF spec
# Majority of values are expected to be string already, so
# checking before casting improves performance in most cases
self.dimension_set[name] = value if isinstance(value, str) else str(value)
def add_metadata(self, key: str, value: Any) -> None:
"""Adds high cardinal metadata for metrics object
This will not be available during metrics visualization.
Instead, this will be searchable through logs.
If you're looking to add metadata to filter metrics, then
use add_dimensions method.
Example
-------
**Add metrics metadata**
metric.add_metadata(key="booking_id", value="booking_id")
Parameters
----------
key : str
Metadata key
value : any
Metadata value
"""
logger.debug(f"Adding metadata: {key}:{value}")
# Cast key to str according to EMF spec
# Majority of keys are expected to be string already, so
# checking before casting improves performance in most cases
if isinstance(key, str):
self.metadata_set[key] = value
else:
self.metadata_set[str(key)] = value
def set_timestamp(self, timestamp: int | datetime.datetime):
"""
Set the timestamp for the metric.
Parameters:
-----------
timestamp: int | datetime.datetime
The timestamp to create the metric.
If an integer is provided, it is assumed to be the epoch time in milliseconds.
If a datetime object is provided, it will be converted to epoch time in milliseconds.
"""
# The timestamp must be a Datetime object or an integer representing an epoch time.
# This should not exceed 14 days in the past or be more than 2 hours in the future.
# Any metrics failing to meet this criteria will be skipped by Amazon CloudWatch.
# See: https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format_Specification.html
# See: https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CloudWatch-Logs-Monitoring-CloudWatch-Metrics.html
if not validate_emf_timestamp(timestamp):
warnings.warn(
"This metric doesn't meet the requirements and will be skipped by Amazon CloudWatch. "
"Ensure the timestamp is within 14 days past or 2 hours future.",
stacklevel=2,
)
self.timestamp = convert_timestamp_to_emf_format(timestamp)
def clear_metrics(self) -> None:
logger.debug("Clearing out existing metric set from memory")
self.metric_set.clear()
self.dimension_set.clear()
self.metadata_set.clear()
def flush_metrics(self, raise_on_empty_metrics: bool = False) -> None:
"""Manually flushes the metrics. This is normally not necessary,
unless you're running on other runtimes besides Lambda, where the @log_metrics
decorator already handles things for you.
Parameters
----------
raise_on_empty_metrics : bool, optional
raise exception if no metrics are emitted, by default False
"""
if not raise_on_empty_metrics and not self.metric_set:
warnings.warn(
"No application metrics to publish. The cold-start metric may be published if enabled. "
"If application metrics should never be empty, consider using 'raise_on_empty_metrics'",
stacklevel=2,
)
else:
logger.debug("Flushing existing metrics")
metrics = self.serialize_metric_set()
print(json.dumps(metrics, separators=(",", ":")))
self.clear_metrics()
def log_metrics(
self,
lambda_handler: Callable[[dict, Any], Any] | Callable[[dict, Any, dict | None], Any] | None = None,
capture_cold_start_metric: bool = False,
raise_on_empty_metrics: bool = False,
default_dimensions: dict[str, str] | None = None,
):
"""Decorator to serialize and publish metrics at the end of a function execution.
Be aware that the log_metrics **does call* the decorated function (e.g. lambda_handler).
Example
-------
**Lambda function using tracer and metrics decorators**
from aws_lambda_powertools import Metrics, Tracer
metrics = Metrics(service="payment")
tracer = Tracer(service="payment")
@tracer.capture_lambda_handler
@metrics.log_metrics
def handler(event, context):
...
Parameters
----------
lambda_handler : Callable[[Any, Any], Any], optional
lambda function handler, by default None
capture_cold_start_metric : bool, optional
captures cold start metric, by default False
raise_on_empty_metrics : bool, optional
raise exception if no metrics are emitted, by default False
default_dimensions: dict[str, str], optional
metric dimensions as key=value that will always be present
Raises
------
e
Propagate error received
"""
# If handler is None we've been called with parameters
# Return a partial function with args filled
if lambda_handler is None:
logger.debug("Decorator called with parameters")
return functools.partial(
self.log_metrics,
capture_cold_start_metric=capture_cold_start_metric,
raise_on_empty_metrics=raise_on_empty_metrics,
default_dimensions=default_dimensions,
)
@functools.wraps(lambda_handler)
def decorate(event, context, *args, **kwargs):
try:
if default_dimensions:
self.set_default_dimensions(**default_dimensions)
response = lambda_handler(event, context, *args, **kwargs)
if capture_cold_start_metric:
self._add_cold_start_metric(context=context)
finally:
self.flush_metrics(raise_on_empty_metrics=raise_on_empty_metrics)
return response
return decorate
def _extract_metric_resolution_value(self, resolution: int | MetricResolution) -> int:
"""Return metric value from metric unit whether that's str or MetricResolution enum
Parameters
----------
unit : int | MetricResolution
Metric resolution
Returns
-------
int
Metric resolution value must be 1 or 60
Raises
------
MetricResolutionError
When metric resolution is not supported by CloudWatch
"""
if isinstance(resolution, MetricResolution):
return resolution.value
if isinstance(resolution, int) and resolution in self._metric_resolutions:
return resolution
raise MetricResolutionError(
f"Invalid metric resolution '{resolution}', expected either option: {self._metric_resolutions}", # noqa: E501
)
def _extract_metric_unit_value(self, unit: str | MetricUnit) -> str:
"""Return metric value from metric unit whether that's str or MetricUnit enum
Parameters
----------
unit : str | MetricUnit
Metric unit
Returns
-------
str
Metric unit value (e.g. "Seconds", "Count/Second")
Raises
------
MetricUnitError
When metric unit is not supported by CloudWatch
"""
if isinstance(unit, str):
if unit in self._metric_unit_valid_options:
unit = MetricUnit[unit].value
if unit not in self._metric_units:
raise MetricUnitError(
f"Invalid metric unit '{unit}', expected either option: {self._metric_unit_valid_options}",
)
if isinstance(unit, MetricUnit):
unit = unit.value
return unit
def _add_cold_start_metric(self, context: Any) -> None:
"""Add cold start metric and function_name dimension
Parameters
----------
context : Any
Lambda context
"""
global is_cold_start
if is_cold_start:
logger.debug("Adding cold start metric and function_name dimension")
with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1, namespace=self.namespace) as metric:
metric.add_dimension(name="function_name", value=context.function_name)
if self.service:
metric.add_dimension(name="service", value=str(self.service))
is_cold_start = False
class SingleMetric(MetricManager):
"""SingleMetric creates an EMF object with a single metric.
EMF specification doesn't allow metrics with different dimensions.
SingleMetric overrides MetricManager's add_metric method to do just that.
Use `single_metric` when you need to create metrics with different dimensions,
otherwise `aws_lambda_powertools.metrics.metrics.Metrics` is
a more cost effective option
Environment variables
---------------------
POWERTOOLS_METRICS_NAMESPACE : str
metric namespace
Example
-------
**Creates cold start metric with function_version as dimension**
import json
from aws_lambda_powertools.metrics import single_metric, MetricUnit, MetricResolution
metric = single_metric(namespace="ServerlessAirline")
metric.add_metric(name="ColdStart", unit=MetricUnit.Count, value=1, resolution=MetricResolution.Standard)
metric.add_dimension(name="function_version", value=47)
print(json.dumps(metric.serialize_metric_set(), indent=4))
Parameters
----------
MetricManager : MetricManager
Inherits from `aws_lambda_powertools.metrics.base.MetricManager`
"""
def add_metric(
self,
name: str,
unit: MetricUnit | str,
value: float,
resolution: MetricResolution | int = 60,
) -> None:
"""Method to prevent more than one metric being created
Parameters
----------
name : str
Metric name (e.g. BookingConfirmation)
unit : MetricUnit
Metric unit (e.g. "Seconds", MetricUnit.Seconds)
value : float
Metric value
resolution : MetricResolution
Metric resolution (e.g. 60, MetricResolution.Standard)
"""
if len(self.metric_set) > 0:
logger.debug(f"Metric {name} already set, skipping...")
return
return super().add_metric(name, unit, value, resolution)
@contextmanager
def single_metric(
name: str,
unit: MetricUnit,
value: float,
resolution: MetricResolution | int = 60,
namespace: str | None = None,
default_dimensions: dict[str, str] | None = None,
) -> Generator[SingleMetric, None, None]:
"""Context manager to simplify creation of a single metric
Example
-------
**Creates cold start metric with function_version as dimension**
from aws_lambda_powertools import single_metric
from aws_lambda_powertools.metrics import MetricUnit
from aws_lambda_powertools.metrics import MetricResolution
with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1, resolution=MetricResolution.Standard, namespace="ServerlessAirline") as metric:
metric.add_dimension(name="function_version", value="47")
**Same as above but set namespace using environment variable**
$ export POWERTOOLS_METRICS_NAMESPACE="ServerlessAirline"
from aws_lambda_powertools import single_metric
from aws_lambda_powertools.metrics import MetricUnit
from aws_lambda_powertools.metrics import MetricResolution
with single_metric(name="ColdStart", unit=MetricUnit.Count, value=1, resolution=MetricResolution.Standard) as metric:
metric.add_dimension(name="function_version", value="47")
Parameters
----------
name : str
Metric name
unit : MetricUnit
`aws_lambda_powertools.helper.models.MetricUnit`
resolution : MetricResolution
`aws_lambda_powertools.helper.models.MetricResolution`
value : float
Metric value
namespace: str
Namespace for metrics
default_dimensions: dict[str, str], optional
Metric dimensions as key=value that will always be present
Yields
-------
SingleMetric
SingleMetric class instance
Raises
------
MetricUnitError
When metric metric isn't supported by CloudWatch
MetricResolutionError
When metric resolution isn't supported by CloudWatch
MetricValueError
When metric value isn't a number
SchemaValidationError
When metric object fails EMF schema validation
""" # noqa: E501
metric_set: dict | None = None
try:
metric: SingleMetric = SingleMetric(namespace=namespace)
metric.add_metric(name=name, unit=unit, value=value, resolution=resolution)
if default_dimensions:
for dim_name, dim_value in default_dimensions.items():
metric.add_dimension(name=dim_name, value=dim_value)
yield metric
metric_set = metric.serialize_metric_set()
finally:
print(json.dumps(metric_set, separators=(",", ":")))