-
Notifications
You must be signed in to change notification settings - Fork 149
/
classification_train.py
225 lines (193 loc) · 10.6 KB
/
classification_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# -*- coding: utf-8 -*-
#
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
import json
import pandas as pd
import numpy as np
import torch
import torch.nn as nn
from copy import deepcopy
from dgllife.utils import Meter, EarlyStopping
from hyperopt import fmin, tpe
from shutil import copyfile
from torch.optim import Adam
from torch.utils.data import DataLoader
from hyper import init_hyper_space
from utils import get_configure, mkdir_p, init_trial_path, \
split_dataset, collate_molgraphs, load_model, predict, init_featurizer, load_dataset
def run_a_train_epoch(args, epoch, model, data_loader, loss_criterion, optimizer):
model.train()
train_meter = Meter()
for batch_id, batch_data in enumerate(data_loader):
smiles, bg, labels, masks = batch_data
if len(smiles) == 1:
# Avoid potential issues with batch normalization
continue
labels, masks = labels.to(args['device']), masks.to(args['device'])
logits = predict(args, model, bg)
# Mask non-existing labels
loss = (loss_criterion(logits, labels) * (masks != 0).float()).mean()
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_meter.update(logits, labels, masks)
if batch_id % args['print_every'] == 0:
print('epoch {:d}/{:d}, batch {:d}/{:d}, loss {:.4f}'.format(
epoch + 1, args['num_epochs'], batch_id + 1, len(data_loader), loss.item()))
train_score = np.mean(train_meter.compute_metric(args['metric']))
print('epoch {:d}/{:d}, training {} {:.4f}'.format(
epoch + 1, args['num_epochs'], args['metric'], train_score))
def run_an_eval_epoch(args, model, data_loader):
model.eval()
eval_meter = Meter()
with torch.no_grad():
for batch_id, batch_data in enumerate(data_loader):
smiles, bg, labels, masks = batch_data
labels = labels.to(args['device'])
logits = predict(args, model, bg)
eval_meter.update(logits, labels, masks)
return np.mean(eval_meter.compute_metric(args['metric']))
def main(args, exp_config, train_set, val_set, test_set):
# Record settings
exp_config.update({
'model': args['model'],
'n_tasks': args['n_tasks'],
'atom_featurizer_type': args['atom_featurizer_type'],
'bond_featurizer_type': args['bond_featurizer_type']
})
if args['atom_featurizer_type'] != 'pre_train':
exp_config['in_node_feats'] = args['node_featurizer'].feat_size()
if args['edge_featurizer'] is not None and args['bond_featurizer_type'] != 'pre_train':
exp_config['in_edge_feats'] = args['edge_featurizer'].feat_size()
# Set up directory for saving results
args = init_trial_path(args)
train_loader = DataLoader(dataset=train_set, batch_size=exp_config['batch_size'], shuffle=True,
collate_fn=collate_molgraphs, num_workers=args['num_workers'])
val_loader = DataLoader(dataset=val_set, batch_size=exp_config['batch_size'],
collate_fn=collate_molgraphs, num_workers=args['num_workers'])
test_loader = DataLoader(dataset=test_set, batch_size=exp_config['batch_size'],
collate_fn=collate_molgraphs, num_workers=args['num_workers'])
model = load_model(exp_config).to(args['device'])
loss_criterion = nn.BCEWithLogitsLoss(reduction='none')
optimizer = Adam(model.parameters(), lr=exp_config['lr'],
weight_decay=exp_config['weight_decay'])
stopper = EarlyStopping(patience=exp_config['patience'],
filename=args['trial_path'] + '/model.pth',
metric=args['metric'])
for epoch in range(args['num_epochs']):
# Train
run_a_train_epoch(args, epoch, model, train_loader, loss_criterion, optimizer)
# Validation and early stop
val_score = run_an_eval_epoch(args, model, val_loader)
early_stop = stopper.step(val_score, model)
print('epoch {:d}/{:d}, validation {} {:.4f}, best validation {} {:.4f}'.format(
epoch + 1, args['num_epochs'], args['metric'],
val_score, args['metric'], stopper.best_score))
if early_stop:
break
stopper.load_checkpoint(model)
test_score = run_an_eval_epoch(args, model, test_loader)
print('test {} {:.4f}'.format(args['metric'], test_score))
with open(args['trial_path'] + '/eval.txt', 'w') as f:
f.write('Best val {}: {}\n'.format(args['metric'], stopper.best_score))
f.write('Test {}: {}\n'.format(args['metric'], test_score))
with open(args['trial_path'] + '/configure.json', 'w') as f:
json.dump(exp_config, f, indent=2)
return args['trial_path'], stopper.best_score
def bayesian_optimization(args, train_set, val_set, test_set):
# Run grid search
results = []
candidate_hypers = init_hyper_space(args['model'])
def objective(hyperparams):
configure = deepcopy(args)
trial_path, val_metric = main(configure, hyperparams, train_set, val_set, test_set)
if args['metric'] in ['roc_auc_score', 'pr_auc_score']:
# Maximize ROCAUC is equivalent to minimize the negative of it
val_metric_to_minimize = -1 * val_metric
else:
val_metric_to_minimize = val_metric
results.append((trial_path, val_metric_to_minimize))
return val_metric_to_minimize
fmin(objective, candidate_hypers, algo=tpe.suggest, max_evals=args['num_evals'])
results.sort(key=lambda tup: tup[1])
best_trial_path, best_val_metric = results[0]
return best_trial_path
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser('Multi-label Binary Classification')
parser.add_argument('-c', '--csv-path', type=str, required=True,
help='Path to a csv file for loading a dataset')
parser.add_argument('-sc', '--smiles-column', type=str, required=True,
help='Header for the SMILES column in the CSV file')
parser.add_argument('-t', '--task-names', default=None, type=str,
help='Header for the tasks to model. If None, we will model '
'all the columns except for the smiles_column in the CSV file. '
'(default: None)')
parser.add_argument('-s', '--split',
choices=['scaffold_decompose', 'scaffold_smiles', 'random'],
default='scaffold_smiles',
help='Dataset splitting method (default: scaffold_smiles). For scaffold '
'split based on rdkit.Chem.AllChem.MurckoDecompose, '
'use scaffold_decompose. For scaffold split based on '
'rdkit.Chem.Scaffolds.MurckoScaffold.MurckoScaffoldSmiles, '
'use scaffold_smiles.')
parser.add_argument('-sr', '--split-ratio', default='0.8,0.1,0.1', type=str,
help='Proportion of the dataset to use for training, validation and test, '
'(default: 0.8,0.1,0.1)')
parser.add_argument('-me', '--metric', choices=['roc_auc_score', 'pr_auc_score'],
default='roc_auc_score',
help='Metric for evaluation (default: roc_auc_score)')
parser.add_argument('-mo', '--model', choices=['GCN', 'GAT', 'Weave', 'MPNN', 'AttentiveFP',
'gin_supervised_contextpred',
'gin_supervised_infomax',
'gin_supervised_edgepred',
'gin_supervised_masking',
'NF'],
default='GCN', help='Model to use (default: GCN)')
parser.add_argument('-a', '--atom-featurizer-type', choices=['canonical', 'attentivefp'],
default='canonical',
help='Featurization for atoms (default: canonical)')
parser.add_argument('-b', '--bond-featurizer-type', choices=['canonical', 'attentivefp'],
default='canonical',
help='Featurization for bonds (default: canonical)')
parser.add_argument('-n', '--num-epochs', type=int, default=1000,
help='Maximum number of epochs allowed for training. '
'We set a large number by default as early stopping '
'will be performed. (default: 1000)')
parser.add_argument('-nw', '--num-workers', type=int, default=1,
help='Number of processes for data loading (default: 1)')
parser.add_argument('-pe', '--print-every', type=int, default=20,
help='Print the training progress every X mini-batches')
parser.add_argument('-p', '--result-path', type=str, default='classification_results',
help='Path to save training results (default: classification_results)')
parser.add_argument('-ne', '--num-evals', type=int, default=None,
help='Number of trials for hyperparameter search (default: None)')
args = parser.parse_args().__dict__
if torch.cuda.is_available():
args['device'] = torch.device('cuda:0')
else:
args['device'] = torch.device('cpu')
if args['task_names'] is not None:
args['task_names'] = args['task_names'].split(',')
args = init_featurizer(args)
df = pd.read_csv(args['csv_path'])
mkdir_p(args['result_path'])
dataset = load_dataset(args, df)
args['n_tasks'] = dataset.n_tasks
train_set, val_set, test_set = split_dataset(args, dataset)
if args['num_evals'] is not None:
assert args['num_evals'] > 0, 'Expect the number of hyperparameter search trials to ' \
'be greater than 0, got {:d}'.format(args['num_evals'])
print('Start hyperparameter search with Bayesian '
'optimization for {:d} trials'.format(args['num_evals']))
trial_path = bayesian_optimization(args, train_set, val_set, test_set)
else:
print('Use the manually specified hyperparameters')
exp_config = get_configure(args['model'])
main(args, exp_config, train_set, val_set, test_set)
trial_path = args['result_path'] + '/1'
# Copy final
copyfile(trial_path + '/model.pth', args['result_path'] + '/model.pth')
copyfile(trial_path + '/configure.json', args['result_path'] + '/configure.json')
copyfile(trial_path + '/eval.txt', args['result_path'] + '/eval.txt')