-
-
Notifications
You must be signed in to change notification settings - Fork 971
/
Copy pathchat_template.py
501 lines (422 loc) · 18.5 KB
/
chat_template.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
"""
HF Chat Templates prompt strategy
"""
import logging
from typing import Any, Dict, List, Optional
from transformers import ProcessorMixin
from axolotl.prompt_tokenizers import PromptTokenizingStrategy
from axolotl.prompters import IGNORE_TOKEN_ID, Prompter
from axolotl.utils.chat_templates import get_chat_template_from_config
# Configure the logger
LOG = logging.getLogger("axolotl")
LOG.setLevel(logging.INFO)
class ChatTemplatePrompter(Prompter):
"""Prompter for HF chat templates"""
def __init__(
self,
tokenizer,
processor=None,
chat_template=None,
max_length=2048,
message_field_role: str = "role",
message_field_content: str = "content",
message_field_training: Optional[str] = None,
message_field_training_detail: Optional[str] = None,
roles: Optional[Dict[str, List[str]]] = None,
drop_system_message: bool = False,
):
if roles:
self.roles = {s: t for t, sources in roles.items() for s in sources}
else:
self.roles = {
"human": "user",
"user": "user",
"assistant": "assistant",
"gpt": "assistant",
"system": "system",
"tool": "tool",
}
self.message_field_role = message_field_role
self.message_field_content = message_field_content
self.message_field_training = message_field_training
self.message_field_training_detail = message_field_training_detail
self.tokenizer = tokenizer
self.processor: ProcessorMixin = processor
self.chat_template = chat_template
self.max_length = max_length
self.drop_system_message = drop_system_message
def build_prompt(self, conversation, add_generation_prompt=False, images=None):
if self.processor:
text = self.processor.apply_chat_template(
conversation,
chat_template=self.chat_template,
tokenize=False,
add_generation_prompt=add_generation_prompt,
)
batch = self.processor(
text=text,
images=images,
return_tensors="pt",
)
# workaround since processor works in batches instead of single examples
for k, val in batch.items():
if k in ["pixel_values"]:
batch[k] = val.tolist()
else:
batch[k] = val.squeeze().tolist()
return batch
return self.tokenizer.apply_chat_template(
conversation,
add_generation_prompt=add_generation_prompt,
chat_template=self.chat_template,
)
def get_offsets_for_train_detail(
self, text: str, train_details: List[Dict], mask_untrainable: bool = True
) -> List[int]:
tokenized_output = self.tokenizer(
text, return_offsets_mapping=True, add_special_tokens=False
)
tokens = tokenized_output.tokens()
token_offsets = tokenized_output["offset_mapping"]
LOG.debug(f"Tokenizing text: {text}")
LOG.debug(f"Tokens: {tokens}")
# Adjust the end offsets. For some reason by default they are set to the same value as the start offsets.
for i in range(len(token_offsets) - 1):
token_offsets[i] = (token_offsets[i][0], token_offsets[i + 1][0] - 1)
# Ensure the last token's end offset is set correctly
token_offsets[-1] = (token_offsets[-1][0], len(text) - 1)
LOG.debug(f"Token offsets: {token_offsets}")
# Initialize all offsets as IGNORE_TOKEN_ID (not trained)
result = [IGNORE_TOKEN_ID] * len(token_offsets)
# Adjust train_details to align with token boundaries
adjusted_train_details = self.adjust_train_details(train_details, token_offsets)
for idx, (start, end) in enumerate(token_offsets):
for detail in adjusted_train_details:
# Check if the token is completely within the detail's range
if start >= detail["begin_offset"] and end <= detail["end_offset"]:
if detail["train"] or not mask_untrainable:
result[idx] = start
LOG.debug(f"Token {idx} ({tokens[idx]}) marked for training")
else:
LOG.debug(
f"Token {idx} ({tokens[idx]}) marked as non-trainable"
)
elif start < detail["end_offset"] and end > detail["begin_offset"]:
# Token partially overlaps with detail, always mark as non-trainable
LOG.debug(
f"Token {idx} ({tokens[idx]}) partially overlaps detail, marked as non-trainable"
)
LOG.debug(f"Final result: {result}")
return result
def adjust_train_details(
self, train_details: List[Dict], token_offsets: List[tuple]
) -> List[Dict]:
adjusted_details = []
for detail in train_details:
begin_offset = detail["begin_offset"]
end_offset = detail["end_offset"]
# Find the first token that starts after or at the begin_offset
begin_token = next(
(
i
for i, (t_start, t_end) in enumerate(token_offsets)
if t_start >= begin_offset
),
len(token_offsets),
)
if begin_token > 0 and token_offsets[begin_token - 1][1] > begin_offset:
begin_token -= 1
# Find the last token that ends before or at the end_offset
end_token = next(
(
i
for i in range(len(token_offsets) - 1, -1, -1)
if token_offsets[i][1] <= end_offset
),
-1,
)
if (
end_token < len(token_offsets) - 1
and token_offsets[end_token + 1][0] < end_offset
):
end_token += 1
if begin_token <= end_token:
adjusted_begin = token_offsets[begin_token][0]
adjusted_end = token_offsets[end_token][1]
if adjusted_begin != begin_offset or adjusted_end != end_offset:
LOG.warning(
f"Adjusting detail offsets: ({begin_offset}, {end_offset}) -> ({adjusted_begin}, {adjusted_end})"
)
adjusted_details.append(
{
"begin_offset": adjusted_begin,
"end_offset": adjusted_end,
"train": detail["train"],
}
)
else:
LOG.warning(
f"Could not adjust detail offsets: ({begin_offset}, {end_offset}). Skipping this detail."
)
return adjusted_details
class ChatTemplateStrategy(PromptTokenizingStrategy):
"""
Tokenizing strategy for instruction-based prompts.
"""
_messages = "messages"
def __init__(
self,
prompter,
tokenizer,
train_on_inputs,
sequence_len,
roles_to_train=None,
train_on_eos=None,
):
super().__init__(prompter, tokenizer, train_on_inputs, sequence_len)
self.roles_to_train = []
if roles_to_train:
# map roles if exist in prompter.roles else use the role as is
self.roles_to_train = [
prompter.roles.get(role, role) for role in roles_to_train
]
self.train_on_eos = train_on_eos
self.images = "images"
@property
def messages(self):
return self._messages
@messages.setter
def messages(self, messages):
self._messages = messages
def tokenize_prompt(self, prompt):
# Old simple legacy behavior that works reliably.
if (
(not self.roles_to_train or self.roles_to_train == ["assistant"])
and not self.train_on_eos
and not self.prompter.message_field_training
and not self.prompter.message_field_training_detail
):
turns = self.get_conversation_thread(prompt)
images = self.get_images(prompt)
prompt_ids = self.prompter.build_prompt(
turns[:-1],
add_generation_prompt=True,
images=images,
)
tokenized_res = self.prompter.build_prompt(turns, images=images)
tokenized_prompt = {}
if isinstance(tokenized_res, list):
input_ids = prompt_ids + tokenized_res[len(prompt_ids) :]
tokenized_prompt["input_ids"] = input_ids
tokenized_prompt["attention_mask"] = [1] * len(input_ids)
else:
input_ids = tokenized_res["input_ids"]
tokenized_prompt = tokenized_res
if not self.train_on_inputs:
user_prompt_len = len(prompt_ids)
labels = [-100] * user_prompt_len + input_ids[user_prompt_len:]
else:
labels = input_ids
tokenized_prompt["labels"] = labels
return tokenized_prompt
turns = self.get_conversation_thread(prompt)
input_ids = self.prompter.build_prompt(turns)
labels = [IGNORE_TOKEN_ID] * len(input_ids)
last_eos_idx = -1
for index, turn in enumerate(turns):
role = turn.get("role")
content = turn.get("content")
train_turn = turn.get("training")
train_detail = turn.get("training_detail")
LOG.debug(
f"Processing turn {index}: role={role}, content={content}, train_turn={train_turn}, train_detail={train_detail}"
)
should_train = None
if train_turn is not None:
should_train = train_turn
elif train_detail is not None:
should_train = bool(train_detail)
else:
should_train = self.train_on_inputs or role in self.roles_to_train
LOG.debug(f"Should train: {should_train}")
turn_start_idx, turn_end_idx = self.find_turn(turns=turns, turn_idx=index)
LOG.debug(f"Turn indices: start={turn_start_idx}, end={turn_end_idx}")
if should_train and turn_start_idx != -1 and turn_end_idx != -1:
if train_detail:
token_offsets = self.prompter.get_offsets_for_train_detail(
content, train_detail
)
LOG.debug(f"Token offsets: {token_offsets}")
for i, offset in enumerate(token_offsets):
if offset != IGNORE_TOKEN_ID and turn_start_idx + i < len(
input_ids
):
labels[turn_start_idx + i] = input_ids[turn_start_idx + i]
LOG.debug(
f"Label set at index {turn_start_idx + i}: {input_ids[turn_start_idx + i]}"
)
else:
labels[turn_start_idx:turn_end_idx] = input_ids[
turn_start_idx:turn_end_idx
]
LOG.debug(
f"Set labels for training from {turn_start_idx} to {turn_end_idx}"
)
LOG.debug(f"Labels after processing turn {index}: {labels}")
# Handle EOS token
eos_idx = self.find_first_eos_token(input_ids, start_idx=turn_end_idx)
if abs(eos_idx - turn_end_idx) <= 3: # Allow for some template padding
last_eos_idx = eos_idx
if self.train_on_eos == "all" or (
self.train_on_eos == "turn" and should_train
):
labels[eos_idx] = input_ids[eos_idx]
LOG.debug(f"EOS token set for training at index {eos_idx}")
else:
LOG.debug(
f"EOS token missing after turn {turn}. eos_idx: {eos_idx}, turn_end_idx: {turn_end_idx}"
)
# Handle 'last' option for train_on_eos
if self.train_on_eos == "last" and last_eos_idx != -1:
labels[last_eos_idx] = input_ids[last_eos_idx]
LOG.debug(f"Last EOS token set for training at index {last_eos_idx}")
LOG.debug(f"Final labels: {labels}")
return {
"input_ids": input_ids,
"labels": labels,
"attention_mask": [1] * len(input_ids),
}
def find_first_eos_token(self, input_ids, start_idx):
eos_token_id = self.tokenizer.eos_token_id
for i in range(start_idx, len(input_ids)):
if input_ids[i] == eos_token_id:
return i
return -1
def find_turn(self, turns: list[dict], turn_idx: int):
"""
Locate the starting and ending indices of the specified turn in a conversation.
"""
# pylint: disable=too-many-return-statements
if turn_idx >= len(turns):
raise ValueError(f"Turn index {turn_idx} out of range")
# mistral does not output message if it contains only system message
if (
turn_idx == 0
and turns[0].get("role") == "system"
and "mistral" in self.tokenizer.name_or_path.lower()
):
return -1, -1
empty_turn = {
"role": turns[turn_idx].get("role"),
"content": "[[dummy_message]]",
}
# Create conversation versions
turns_with_empty = turns[:turn_idx] + [empty_turn]
turns_with_content = turns[: turn_idx + 1]
# Generate the conversation up to the turn, with final turn replaced with dummy content
dummy_ids = self.prompter.build_prompt(turns_with_empty) # type: ignore
# Generate the conversation up to the turn, with final turn included
full_ids = self.prompter.build_prompt(turns_with_content) # type: ignore
if not full_ids or not dummy_ids:
LOG.warning(f"Empty template generated for turn {turn_idx}")
return -1, -1
# Find first difference (start of content)
start_idx = None
min_len = min(len(dummy_ids), len(full_ids))
for i in range(min_len):
if dummy_ids[i] != full_ids[i]:
start_idx = i
break
if start_idx is None:
LOG.warning(f"Could not find content start boundary for turn {turn_idx}")
return -1, -1
# Find last difference (end of content)
end_idx = None
for i in range(min_len):
dummy_pos = len(dummy_ids) - 1 - i
full_pos = len(full_ids) - 1 - i
if dummy_ids[dummy_pos] != full_ids[full_pos]:
end_idx = full_pos + 1 # Add one to include the last token when slice
break
if end_idx is None:
LOG.warning(f"Could not find content end boundary for turn {turn_idx}")
return -1, -1
if end_idx < start_idx:
LOG.warning(
f"Content end boundary is before start boundary for turn {turn_idx}"
)
return -1, -1
if end_idx == start_idx:
LOG.warning(
f"Content end boundary is the same as start boundary for turn {turn_idx}. This is likely an empty turn."
)
return -1, -1
LOG.debug(f"Content boundaries: {start_idx}, {end_idx}")
LOG.debug(
f"Content tokens: {self.tokenizer.convert_ids_to_tokens(full_ids[start_idx:end_idx])}"
)
return start_idx, end_idx
def get_conversation_thread(self, prompt):
turns = []
optional_keys = [
"tool_calls", # tool that 'assistant' calls
"name", # name of tool given by 'tool'
"tool_call_id", # mistral/mixtral requires this
]
for message in prompt[self.messages]:
turn = {
"role": self.prompter.roles[message[self.prompter.message_field_role]],
"training": message.get(self.prompter.message_field_training),
"training_detail": message.get(
self.prompter.message_field_training_detail
),
}
# do not add content if None as it may conflict with some templates due to tools
content = message.get(self.prompter.message_field_content, None)
if content is not None:
turn["content"] = content
for key in optional_keys:
value = message.get(key, None)
if value is not None:
turn[key] = value
turns.append(turn)
if self.prompter.drop_system_message and turns[0]["role"] == "system":
turns = turns[1:]
return turns
def get_images(self, prompt):
return prompt.get(self.images, None)
def load(tokenizer, cfg, ds_cfg: Optional[Dict[str, Any]] = None, processor=None):
# pylint: disable=duplicate-code
ds_cfg = ds_cfg or {}
chat_template_string = get_chat_template_from_config(
cfg=cfg, ds_cfg=ds_cfg, tokenizer=tokenizer
)
LOG.info(f"Using chat template:\n---\n{chat_template_string!s}\n---")
prompter_params = {
"tokenizer": tokenizer,
"chat_template": chat_template_string,
"message_field_role": ds_cfg.get("message_field_role", "role"),
"message_field_content": ds_cfg.get("message_field_content", "content"),
"message_field_training": ds_cfg.get("message_field_training", None),
"message_field_training_detail": ds_cfg.get(
"message_field_training_detail",
None,
),
"roles": ds_cfg.get("roles"),
"drop_system_message": ds_cfg.get("drop_system_message", False),
# we need to add one for detecting sequences with exceeding the `sequence_len` limit.
"max_length": cfg.sequence_len + 1,
"processor": processor,
}
strategy_params = {
"train_on_inputs": cfg.train_on_inputs,
"sequence_len": cfg.sequence_len,
"roles_to_train": ds_cfg.get("roles_to_train", ["assistant"]),
"train_on_eos": ds_cfg.get("train_on_eos", "turn"),
}
strategy = ChatTemplateStrategy(
ChatTemplatePrompter(**prompter_params), tokenizer=tokenizer, **strategy_params
)
if "field_messages" in ds_cfg and hasattr(strategy, "messages"):
strategy.messages = ds_cfg["field_messages"]
return strategy