-
Notifications
You must be signed in to change notification settings - Fork 2
/
linear_regression.py
143 lines (117 loc) · 4.97 KB
/
linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# ~~~ Author: Tom Bernard ~~~
# === imports ===
import warnings
import itertools
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets, linear_model, metrics
from sklearn.metrics import confusion_matrix
# === code ===
# --- file names ---
file_name_predictors = "Data/predictors.npy"
file_name_train_predictors = "Data/train_indexes.npy"
file_name_test_predictors = "Data/test_indexes.npy"
file_name_labels_color = "Data/labels_color.npy"
file_name_labels_quality = "Data/labels_quality.npy"
file_name_labels_quality_binary = "Data/labels_quality_binary.npy"
# --- load data ---
y_color = np.load(file_name_labels_color)
y_quality = np.load(file_name_labels_quality)
y_quality_binary = np.load(file_name_labels_quality_binary)
train_indexes = np.load(file_name_train_predictors)
test_indexes = np.load(file_name_test_predictors)
the_X = np.load(file_name_predictors)
the_X_w_color = np.column_stack((the_X, y_color))
# --- FUNCTION: add confusion matrrix to plot ---
# --- plot_confusion_matrix(numpy.ndarray (2D), [int/string], bool, string, plt.cm.Color) ---
# --- credit: http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html
def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues):
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
with warnings.catch_warnings():
warnings.simplefilter("ignore")
plt.tight_layout()
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.figure(1, figsize=(15,10))
plt.figure(2, figsize=(15,10))
plt.figure(3, figsize=(15,10))
# --- FUNCTION: add ROC graph to plot ---
# --- plot_ROC(int, numpy.ndarray (2D), numpy.ndarray (2D), string) ---
# --- credit: http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
def plot_ROC(subplt, y_test, predicted, title):
plt.figure(3)
plt.subplot(subplt)
false_positive_rate, true_positive_rate, thresholds = metrics.roc_curve(y_test, predicted)
roc_auc = metrics.auc(false_positive_rate, true_positive_rate)
plt.title('Receiver Operating Characteristic for ' + title)
plt.plot(false_positive_rate, true_positive_rate, 'b', label='AUC = %0.2f'% roc_auc)
plt.legend(loc='lower right')
plt.plot([0,1],[0,1],'r--')
plt.xlim([-0.1,1.2])
plt.ylim([-0.1,1.2])
plt.ylabel('True Positive Rate')
plt.xlabel('False Positive Rate')
for z in [[y_color, the_X, "Color", 231, ["red", "white"]] , [y_quality, the_X, "Quality", 232], [y_quality, the_X_w_color, "Quality with Color as a Feature", 235], [y_quality_binary, the_X, "Binary Quality", 233, ["Low", "High"]], [y_quality_binary, the_X_w_color, "Binary Quality with Color as a Feature", 236, ["Low", "High"]]]:
# --- set data variables ---
y = z[0]
X = z[1]
title = z[2]
plt_pos = z[3]
# --- split training and testing ---
X_train = X[train_indexes,:]
X_test = X[test_indexes,:]
y_train = z[0][train_indexes]
y_test = z[0][test_indexes]
# --- print info ---
print ("\n --- " + title + " --- ")
# --- run algorithm ---
clf = linear_model.LinearRegression()
with warnings.catch_warnings():
warnings.simplefilter("ignore")
clf.fit(X_train, y_train)
# --- results ---
predicted = clf.predict(X_test)
predicted_rounded = np.asarray([0 if x<0 else x for x in np.round(predicted)])
# --- print error ---
print ("Squared Error: " + str(((predicted-y_test)**2).sum()))
print ("Accuracy Score: " + str(metrics.accuracy_score(y_test, predicted_rounded)))
print ("R2 value: " + str(metrics.r2_score(y_test, predicted)))
# --- plotting ---
if len(z) == 5:
labels = z[4]
else:
test_max = max( int(y_test.max()), int(predicted_rounded.max()) )
test_min = min( int(y_test.min()), int(predicted_rounded.min()) )
labels = range(test_min, test_max+1)
plt.figure(1)
plt.subplot(plt_pos)
plt.scatter(y_test,predicted)
plt.xlabel('Actual')
plt.ylabel('Predicted')
plt.title(title)
plt.figure(2)
plt.subplot(plt_pos)
plot_confusion_matrix(confusion_matrix(y_test, predicted_rounded), classes=labels, title=title)
# --- Logistic Regression only. Generate ROC graphs ---
if title == "Color":
plot_ROC(221, y_test, predicted, title)
elif title == "Binary Quality":
plot_ROC(222, y_test, predicted, title)
elif title == "Binary Quality with Color as a Feature":
plot_ROC(223, y_test, predicted, title)
# --- display plot ---
plt.show()
print ("")