-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathTkendall.m
69 lines (61 loc) · 2.79 KB
/
Tkendall.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
classdef Tkendall < Metric
%TKENDALL static class to calculate Kendall′s $$\tau_b$$
%
% TKENDALL methods:
% CALCULATEMETRIC - Computes the evaluation metric
% CALCULATECROSSVALMETRIC - Computes the evaluation metric as an error
%
% References:
% [1] M.G. Kendall
% Rank Correlation Methods
% Hafner Press, New York (1962)
% [2] M. Cruz-Ramírez, C. Hervás-Martínez, J. Sánchez-Monedero and
% P. A. Gutiérrez Metrics to guide a multi-objective evolutionary
% algorithm for ordinal classification, Neurocomputing, Vol. 135, July, 2014, pp. 21-31.
% https://doi.org/10.1016/j.neucom.2013.05.058
%
% This file is part of ORCA: https://github.com/ayrna/orca
% Original authors: Pedro Antonio Gutiérrez, María Pérez Ortiz, Javier Sánchez Monedero
% Citation: If you use this code, please cite the associated paper http://www.uco.es/grupos/ayrna/orreview
% Copyright:
% This software is released under the The GNU General Public License v3.0 licence
% available at http://www.gnu.org/licenses/gpl-3.0.html
methods
function obj = Tkendall()
obj.name = 'Tkendall';
end
end
methods(Static = true)
function tkendall = calculateMetric(argum1,argum2)
%CALCULATEMETRIC Computes the evaluation metric
% METRIC = CALCULATEMETRIC(CM) returns calculated metric from confussion
% matrix CM
% METRIC = CALCULATEMETRIC(actual, pred) returns calculated metric from
% real labels (ACTUAL) labels and predicted labels (PRED)
if nargin < 2
[ argum1, argum2 ] = getLabelsFromCM( argum1 );
end
if exist ('OCTAVE_VERSION', 'builtin') > 0
[tkendall] = kendall(argum1, argum2);
else
[tkendall] = corr(argum1, argum2, 'type', 'Kendall');
end
if isnan(tkendall)
tkendall = 0;
end
end
function value = calculateCrossvalMetric(argum1,argum2)
%CALCULATECROSSVALMETRIC Computes the evaluation metric and returns
%it as an error.
% METRIC = CALCULATECROSSVALMETRIC(CM) returns calculated metric from confussion
% matrix CM
% METRIC = CALCULATECROSSVALMETRIC(actual, pred) returns calculated metric from
% real labels (ACTUAL) labels and predicted labels (PRED)
if nargin == 2
value = 1 - Tkendall.calculateMetric(argum1,argum2) ;
else
value = 1 - Tkendall.calculateMetric(argum1);
end
end
end
end