-
Notifications
You must be signed in to change notification settings - Fork 31
/
apop_mle.m4.c
916 lines (829 loc) · 40.5 KB
/
apop_mle.m4.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
/** \file apop_mle.c */
/*Copyright (c) 2006--2010 by Ben Klemens. Licensed under the GPLv2; see COPYING. */
#include "apop_internal.h"
#include <setjmp.h>
#include <signal.h>
#include <gsl/gsl_deriv.h>
#include <gsl/gsl_siman.h>
#include <gsl/gsl_randist.h>
#include <gsl/gsl_multimin.h>
#include <gsl/gsl_multiroots.h>
typedef long double (*apop_fn_with_params) (apop_data *, apop_model *);
typedef void (*apop_df_with_void)(const gsl_vector *beta, void *d, gsl_vector *gradient);
typedef void (*apop_fdf_with_void)(const gsl_vector *beta, void *d, double *f, gsl_vector *df);
/** \cond doxy_ignore */
typedef struct {
gsl_vector *beta;
int dimension;
} grad_params;
typedef struct {
apop_model *model;
apop_data *data;
apop_fn_with_params *f;
grad_params *gp; //Used only by apop_internal_numerical_gradient.
gsl_vector *beta, *starting_pt;
int use_constraint;
double best_ll;
char want_cov, want_predicted, want_tests, want_info;
jmp_buf bad_eval_jump;
apop_data** path;
} infostruct;
/** \endcond */ //End of Doxygen ignore.
static apop_model * find_roots (infostruct p); //see end of file.
m4_define(<|default_delta|>,1e-3) //as a macro, we can put it in documentation
/* Generate support fns (esp. initializers) for apop_mle_settings and apop_parts_wanted structs. */
Apop_settings_copy(apop_parts_wanted, )
Apop_settings_free(apop_parts_wanted, )
Apop_settings_init(apop_parts_wanted,
Apop_varad_set(covariance, 'n');
Apop_varad_set(predicted, 'n');
Apop_varad_set(tests, 'n');
Apop_varad_set(info, 'n');
)
Apop_settings_copy(apop_mle, )
Apop_settings_free(apop_mle, )
Apop_settings_init(apop_mle,
Apop_varad_set(starting_pt, NULL);
Apop_varad_set(tolerance, 1e-5);
Apop_varad_set(max_iterations, 5000);
Apop_varad_set(method, "");//default picked in apop_maximum_likelihood
Apop_varad_set(verbose, 0);
Apop_varad_set(step_size, 0.05);
Apop_varad_set(delta, default_delta);
Apop_varad_set(dim_cycle_tolerance, 0);
//siman:
//siman also uses step_size = 1.;
Apop_varad_set(n_tries, 5); //The number of points to try for each step.
Apop_varad_set(iters_fixed_T, 5); //The number of iterations at each temperature.
Apop_varad_set(k, 1.0); //The maximum step size in the random walk.
Apop_varad_set(t_initial, 50); //cooling schedule data
Apop_varad_set(mu_t, 1.002);
Apop_varad_set(t_min, 5.0e-1);
Apop_varad_set(rng, NULL);
)
// MLE support functions
//Including numerical differentiation and a couple of functions to
//negate the likelihood fns without bothering the user.
static void apop_annealing(infostruct*); //below.
static double one_d(double b, void *in){
infostruct *i = in;
long double penalty = 0;
gsl_vector_set(i->gp->beta, i->gp->dimension, b);
apop_data_unpack(i->gp->beta, i->model->parameters);
if (i->model->constraint)
penalty = i->model->constraint(i->data, i->model);
return (*(i->f))(i->data, i->model) + penalty;
}
//Numeric first and second derivatives.
/* For each element of the parameter set, jiggle it to find its
gradient. Return a vector as long as the parameter list. */
static void apop_internal_numerical_gradient(apop_fn_with_params ll,
infostruct* info, gsl_vector *out, double delta){
double result, err;
gsl_vector *beta = apop_data_pack(info->model->parameters);
infostruct i = *info;
i.f = ≪
i.gp = &(grad_params){ .beta = gsl_vector_alloc(beta->size)};
gsl_function F = { .function= one_d,
.params = &i };
for (size_t j=0; j< beta->size; j++){
i.gp->dimension = j;
gsl_vector_memcpy(i.gp->beta, beta);
gsl_deriv_central(&F, gsl_vector_get(beta,j), delta, &result, &err);
gsl_vector_set(out, j, result);
}
gsl_vector_free(beta);
}
/**
A wrapper around the GSL's one-dimensional \c gsl_deriv_central to find a numeric differential for each dimension of the input \ref apop_model's log likelihood (or \c p if \c log_likelihood is \c NULL).
\param data The \ref apop_data set to use for all evaluations.
\param model The \ref apop_model, expressing the function whose derivative is sought. The gradient is taken via small changes along the model parameters.
\param delta The size of the differential. (default: default_delta, but see below)
\code
gsl_vector *gradient = apop_numerical_gradient(data, your_parametrized_model);
\endcode
\li If you do not set \ref delta as an input, I first look for an \ref apop_mle_settings
group attached to the input model, and check that for a \c delta element. If that is
also missing, use the default of default_delta.
\li This function uses the \ref designated syntax for inputs.
*/
APOP_VAR_HEAD gsl_vector * apop_numerical_gradient(apop_data *data, apop_model *model, double delta){
apop_data * apop_varad_var(data, NULL);
apop_model * apop_varad_var(model, NULL);
Nullcheck(model, NULL) Nullcheck_p(model, NULL)
double apop_varad_var(delta, 0);
if (!delta){
apop_mle_settings *mp = apop_settings_get_group(model, apop_mle);
delta = mp ? mp->delta : default_delta;
}
APOP_VAR_ENDHEAD
Get_vmsizes(model->parameters); //tsize
apop_fn_with_params ll = model->log_likelihood ? model->log_likelihood : model->p;
Apop_stopif(!ll, return NULL, 0, "Input model has neither p nor log_likelihood method. Returning NULL.");
gsl_vector *out = gsl_vector_calloc(tsize);
infostruct i = (infostruct) {.model = model, .data = data};
apop_internal_numerical_gradient(ll, &i, out, delta);
return out;
}
/** \cond doxy_ignore */
typedef struct {
apop_model *base_model;
int *current_index;
} apop_model_for_infomatrix_struct;
/** \endcond */
static long double apop_fn_for_infomatrix(apop_data *d, apop_model *m){
static threadlocal gsl_vector *v = NULL;
apop_model_for_infomatrix_struct *settings = m->more;
apop_model *mm = settings->base_model;
apop_score_type ms = apop_score_vtable_get(mm);
if (ms){
Get_vmsizes(mm->parameters); //tsize
if (!v || v->size != tsize){
if (v) gsl_vector_free(v);
v = gsl_vector_alloc(tsize);
}
ms(d, v, mm);
return gsl_vector_get(v, *settings->current_index);
} //else:
gsl_vector *vv = apop_numerical_gradient(d, mm);
double out = gsl_vector_get(vv, *settings->current_index);
gsl_vector_free(vv);
return out;
}
apop_model *apop_model_for_infomatrix = &(apop_model){"Ad hoc model for working out the information matrix.",
.log_likelihood = apop_fn_for_infomatrix};
/** Numerically estimate the matrix of second derivatives of the parameter values, via
a series of re-evaluations at small differential steps. [Therefore, it may be expensive
to do this for a very computationally-intensive model.]
\param data The \ref apop_data at which the model was estimated (default: \c NULL)
\param model The \ref apop_model, with parameters already estimated (no default, must not be \c NULL)
\param delta the step size for the differentials. (default: default_delta, but see below)
\return The matrix of estimated second derivatives at the given data and parameter values.
\li If you do not set \ref delta as an input, I first look for an \ref apop_mle_settings group attached to the input model, and check that for a \c delta element. If that is also missing, use the default of default_delta.
\li This function uses the \ref designated syntax for inputs.
*/
APOP_VAR_HEAD apop_data * apop_model_hessian(apop_data * data, apop_model *model, double delta){
apop_data * apop_varad_var(data, NULL);
apop_model * apop_varad_var(model, NULL);
Nullcheck(model, NULL)
double apop_varad_var(delta, 0);
if (!delta){
apop_mle_settings *mp = apop_settings_get_group(model, apop_mle);
delta = mp ? mp->delta : default_delta;
}
APOP_VAR_ENDHEAD
int k;
Get_vmsizes(model->parameters) //tsize
size_t betasize = tsize;
apop_data *out = apop_data_calloc(0, betasize, betasize);
gsl_vector *dscore = gsl_vector_alloc(betasize);
apop_model_for_infomatrix_struct ms = { .base_model = model, .current_index = &k, };
apop_model *m = apop_model_copy(apop_model_for_infomatrix);
m->parameters = model->parameters;
m->more = &ms;
if (apop_settings_get_group(model, apop_mle))
apop_settings_copy_group(m, model, "apop_mle");
for (k=0; k< betasize; k++){
dscore = apop_numerical_gradient(data, m, delta);
//We get two estimates of the (k,j)th element, which are often very close,
//and take the mean.
for (size_t j=0; j< betasize; j++){
*gsl_matrix_ptr(out->matrix, k, j) += gsl_vector_get(dscore, j)/2;
*gsl_matrix_ptr(out->matrix, j, k) += gsl_vector_get(dscore, j)/2;
}
gsl_vector_free(dscore);
}
if (model->parameters->names->row){
apop_name_stack(out->names, model->parameters->names, 'r');
apop_name_stack(out->names, model->parameters->names, 'c', 'r');
}
return out;
}
/** Produce the covariance matrix for the parameters of an estimated model via the derivative of the score function at the parameter. I.e., I find the second derivative via \ref apop_model_hessian , and take the negation of the inverse.
I follow Efron and Hinkley in using the estimated information matrix---the value of the information matrix at the estimated value of the score---not the expected information matrix that is the integral over all possible data. See Pawitan 2001 (who cribbed a little off of Efron and Hinkley) or Klemens 2008 (who directly cribbed off of both) for further details.
\param data The data by which your model was estimated
\param model A model whose parameters have been estimated.
\param delta The differential by which to step for sampling changes. (default: default_delta, but see below)
\return A covariance matrix for the data. Also, if the data does not have a
<tt>"<Covariance>"</tt> page, I'll set it to the result as well [i.e., I won't overwrite an
existing covariance page].
\li If you do not set \ref delta as an input, I first look for an \ref apop_mle_settings group attached to the input model, and check that for a \c delta element. If that is also missing, use the default of default_delta.
\li This function uses the \ref designated syntax for inputs.
*/
APOP_VAR_HEAD apop_data * apop_model_numerical_covariance(apop_data * data, apop_model *model, double delta){
apop_data * apop_varad_var(data, NULL);
apop_model * apop_varad_var(model, NULL);
Nullcheck(model, NULL)
double apop_varad_var(delta, 0);
if (!delta){
apop_mle_settings *mp = apop_settings_get_group(model, apop_mle);
delta = mp ? mp->delta : default_delta;
}
APOP_VAR_ENDHEAD
apop_data *hessian = apop_model_hessian(data, model, delta);
if (apop_opts.verbose > 1){
printf("The estimated Hessian:\n");
apop_data_show(hessian);
}
apop_data *out = apop_data_alloc();
out->matrix = apop_matrix_inverse(hessian->matrix);
gsl_matrix_scale(out->matrix, -1);
if (hessian->names->row){
apop_name_stack(out->names, hessian->names, 'r');
apop_name_stack(out->names, hessian->names, 'c');
}
apop_data_free(hessian);
if (!apop_data_get_page(model->parameters, "<Covariance>"))
apop_data_add_page(model->parameters, out, "<Covariance>");
return out;
}
///On to the interfaces between the models and the methods
static void tracepath(const gsl_vector *beta, double value, apop_data **path){
size_t msize1 = (*path && (*path)->matrix) ? (*path)->matrix->size1: 0;
if (!*path) {
*path = apop_data_alloc();
(*path)->names->title = strdup("Path of ML search");
apop_name_add((*path)->names, "f(x)", 'v');
apop_name_add((*path)->names, "x", 'm');
}
(*path)->matrix = apop_matrix_realloc((*path)->matrix, msize1+1, beta->size);
gsl_vector_memcpy(Apop_rv(*path, msize1), beta);
(*path)->vector = apop_vector_realloc((*path)->vector, msize1+1);
gsl_vector_set((*path)->vector, msize1, value);
}
/* Every actual evaluation of the function go through the negshell and dnegshell fns,
because there are several things that have to be done beyond just getting
model.log_likelihood:
--Negate, because statisticians and social scientists like to maximize; physicists like to minimize.
--Work out if the model provides log_likelihood or p.
--Call \ref trace_path if needed.
--Go from a single vector to a full apop_data set and back (via apop_data_pack/unpack)
--Check the derivative function if available.
--Check constraints.
*/
static double negshell (const gsl_vector *beta, void * in){
infostruct *i = in;
double penalty = 0,
out = 0;
long double (*f)(apop_data *, apop_model *);
f = i->model->log_likelihood? i->model->log_likelihood : i->model->p;
Apop_stopif(!f, longjmp(i->bad_eval_jump, -1),
0, "The model you sent to the MLE function has neither log_likelihood element nor p element.");
apop_data_unpack(beta, i->model->parameters);
if (i->use_constraint && i->model->constraint)
penalty = i->model->constraint(i->data, i->model);
if (penalty) apop_data_pack(i->model->parameters, (gsl_vector*) beta);
double f_val = f(i->data, i->model);
out = penalty - f_val; //negative llikelihood
Apop_stopif(gsl_isnan(out), longjmp(i->bad_eval_jump, -1),
0, "I got a NaN in evaluating the objective function.%s",
!i->model->constraint ? " Maybe add a constraint to your model?" : "");
if (i->path) tracepath(i->model->parameters->vector, -out, i->path);
if (i->want_info =='y'){
//I report the log likelihood under the assumption that the final param set
//matches the best ll evaluated.
long double this_ll = i->model->log_likelihood? -out : log(-out); //negative negative llikelihood.
if(gsl_isnan(this_ll)){
Apop_stopif(!i->model->log_likelihood && penalty > f_val, i->want_info='n',
1, "Model's p=%g, penalty=%g, for a negative adjusted p=%g. "
"Continuing, but can not report covariance or "
"log likelihood-based statistics.", f_val, penalty, f_val-penalty);
Apop_stopif(1, apop_data_show(i->model->parameters); i->want_info='n',
1, "NaN resulted from the following value tried by the maximum likelihood system.");
}
i->best_ll = GSL_MAX(i->best_ll, this_ll);
}
return out;
}
static int dnegshell (const gsl_vector *beta, void * in, gsl_vector * g){
/* The derivative-calculating routine.
If the constraint binds
then: take the numerical derivative of negshell, which will be the
numerical derivative of the penalty.
else: just find dlog_likelihood. If the model doesn't have a
dlog likelihood or the user asked to ignore it, then the main
maximum likelihood fn replaced model.score with
apop_numerical_gradient anyway.
Finally, reverse the sign, since the GSL is trying to minimize instead of maximize.
*/
infostruct *i = in;
apop_mle_settings *mp = apop_settings_get_group(i->model, apop_mle);
apop_data_unpack(beta, i->model->parameters);
/* In all cases, negshell gets called first, so the constraint is already
checked and beta nudged accordingly.
if(i->model->constraint && i->model->constraint(i->data, i->model))
apop_data_pack(i->model->parameters, (gsl_vector *) beta); */
apop_score_type ms = apop_score_vtable_get(i->model);
if (ms) ms(i->data, g, i->model);
else {
apop_fn_with_params ll = i->model->log_likelihood ? i->model->log_likelihood : i->model->p;
apop_internal_numerical_gradient(ll, i, g, mp->delta);
}
if (mp->path) negshell (beta, in);
gsl_vector_scale(g, -1);
return GSL_SUCCESS;
}
//This is just to satisfy the GSL's format.
static void fdf_shell(const gsl_vector *beta, void *i, double *f, gsl_vector *df){
*f = negshell(beta, i);
dnegshell(beta, i, df);
}
static int ctrl_c;
static void mle_sigint(){ ctrl_c ++; }
static int setup_starting_point(apop_mle_settings *mp, gsl_vector *x){
Apop_stopif(!x, return -1, 0, "The vector I'm trying to optimize over is NULL.");
if (!mp->starting_pt) gsl_vector_set_all (x, 1);
else for (int i=0; i< x->size; i++)
x->data[i] = mp->starting_pt[i];
return 0;
}
void add_info_criteria(apop_data *d, apop_model *m, apop_model *est, double ll, int param_ct){
//Did the sending function save last value of f()?
if (!ll) ll = apop_log_likelihood(d, m);
if (!est->info) est->info = apop_data_alloc();
apop_data_add_named_elmt(est->info, "log likelihood", ll);
double AIC = 2*param_ct - 2 *ll;
apop_data_add_named_elmt(est->info, "AIC", AIC);
if (d){//some models have NULL data.
int n;
{Get_vmsizes(d); n = maxsize;}
apop_data_add_named_elmt(est->info, "AIC_c", AIC + 2*param_ct *(param_ct + 1.0)/(n - param_ct - 1.0));
Get_vmsizes(d); //vsize, msize1, tsize
apop_data_add_named_elmt(est->info, "BIC", param_ct * log(n) - 2 *ll);
}
}
static void auxinfo(apop_data *params, infostruct *i, int status, double ll){
apop_model *est = i->model; //just an alias.
/* This catches too many near-misses
if(est->constraint)
apop_assert(!est->constraint(i->data, est), "the maximum likelihood search ended "
"at a point that doesn't satisfy the model's constraints.");*/
if (i->want_cov=='y' && est->parameters){
apop_model_numerical_covariance(i->data, est, Apop_settings_get(est,apop_mle,delta));
if (i->want_tests=='y')
apop_estimate_parameter_tests (est);
}
if (!est->info) est->info = apop_data_alloc();
apop_data_add_named_elmt(est->info, "status", status);
if (i->want_info=='y') add_info_criteria(i->data, i->model, est, ll, i->beta->size);
}
static void apop_maximum_likelihood_w_d(apop_data * data, infostruct *i){
/* The maximum likelihood calculations, given a derivative of the log likelihood.
If no derivative exists, will calculate a numerical gradient.
Inside the infostruct, you'll find these elements:
\param data the data matrix
\param dist the \ref apop_model object: probit, zipf, &c.
\param starting_pt an array of doubles suggesting a starting point. If NULL, use a vector whose elements are all 0.1 (zero has too many pathological cases).
\param step_size the initial step size.
\param tolerance the precision the minimizer uses. Only vaguely related to the precision of the actual var.
\return an \ref apop_model with the parameter estimates, &c. If returned_estimate->status == 0, then optimum parameters were found; if status != 0, then there were problems.
*/
gsl_multimin_fdfminimizer *s;
apop_model *est = i->model; //just an alias.
apop_mle_settings *mp = apop_settings_get_group(est, apop_mle);
int iter = 0,
status = 0,
apopstatus = 0,
betasize= i->beta->size;
if (!strcasecmp(mp->method, "BFGS cg"))
s = gsl_multimin_fdfminimizer_alloc(gsl_multimin_fdfminimizer_vector_bfgs2, betasize);
else if (!strcasecmp(mp->method, "PR cg"))
s = gsl_multimin_fdfminimizer_alloc(gsl_multimin_fdfminimizer_conjugate_pr, betasize);
else //Default: "FR CG" conjugate gradient (Fletcher-Reeves)
s = gsl_multimin_fdfminimizer_alloc(gsl_multimin_fdfminimizer_conjugate_fr, betasize);
gsl_multimin_function_fdf minme = {
.f = negshell,
.df = (apop_df_with_void) dnegshell,
.fdf = (apop_fdf_with_void) fdf_shell,
.n = betasize,
.params = i};
ctrl_c = 0;
if (setjmp(i->bad_eval_jump))
Apop_stopif(1, return, 0, "Failure evaluating likelihood at the starting point. Add a starting point?");
gsl_multimin_fdfminimizer_set (s, &minme, i->beta, mp->step_size, mp->tolerance);
signal(SIGINT, mle_sigint);
do {
iter++;
if (setjmp(i->bad_eval_jump)) {
apopstatus = -1;
break;
}
status = gsl_multimin_fdfminimizer_iterate(s);
if(status && status!=GSL_CONTINUE) break; //commented out error msg because too many GSL_ENOPROG false positives.
//Apop_stopif(status && status!=GSL_CONTINUE, break, 0, "GSL error: %s", gsl_strerror(status));
status = gsl_multimin_test_gradient(s->gradient, mp->tolerance);
if(status && status!=GSL_CONTINUE) break; //commented out error msg because too many GSL_ENOPROG false positives.
//Apop_stopif(status && status!=GSL_CONTINUE, break, 0, "GSL error: %s", gsl_strerror(status));
if (mp->verbose)
printf ("%5i %.5f f()=%10.5f gradient=%.3f\n", iter, gsl_vector_get (s->x, 0), s->f, gsl_vector_get(s->gradient,0));
Apop_stopif(status == GSL_SUCCESS, apopstatus=0, 2, "Optimum found.");
} while (status == GSL_CONTINUE && iter < mp->max_iterations && !ctrl_c);
signal(SIGINT, NULL);
Apop_stopif(iter==mp->max_iterations, apopstatus = -1, 1, "Max iterations reached, implying that I did not find an optimum.");
//Clean up, copy results to output estimate.
apop_data_unpack(s->x, est->parameters);
gsl_multimin_fdfminimizer_free(s);
gsl_vector_free(i->beta);
auxinfo(est->parameters, i, apopstatus, i->best_ll);
}
/* See apop_maximum_likelihood_w_d for notes. */
static void apop_maximum_likelihood_no_d(apop_data * data, infostruct * i){
apop_model *est = i->model;
apop_mle_settings *mp = apop_settings_get_group(est, apop_mle);
int status=0,
apopstatus = 0,
iter = 0,
betasize= i->beta->size;
gsl_multimin_fminimizer *s;
gsl_vector *ss;
double size;
s = gsl_multimin_fminimizer_alloc(gsl_multimin_fminimizer_nmsimplex, betasize);
ss = gsl_vector_alloc(betasize);
ctrl_c =
apopstatus = 0; //assume failure until we score a success.
gsl_vector_set_all (ss, mp->step_size);
gsl_multimin_function minme = {.f = negshell, .n= betasize, .params = i};
if (setjmp(i->bad_eval_jump))
Apop_stopif(1, return, 0, "Failure evaluating likelihood at the starting point. Add a starting point?");
gsl_multimin_fminimizer_set (s, &minme, i->beta, ss);
//i->beta = s->x;
signal(SIGINT, mle_sigint);
do {
iter++;
if (setjmp(i->bad_eval_jump)) {
apopstatus = -1;
break;
}
status = gsl_multimin_fminimizer_iterate(s);
if (status) break;
size = gsl_multimin_fminimizer_size(s);
status = gsl_multimin_test_size (size, mp->tolerance);
if(mp->verbose){
printf ("%5d ", iter);
for (size_t j = 0; j < betasize; j++)
printf ("%8.3e ", gsl_vector_get (s->x, j));
printf ("f()=%7.3f size=%.3f\n", s->fval, size);
if (status == GSL_SUCCESS) {
printf ("Optimum found at:\n");
printf ("%5d ", iter);
for (size_t j = 0; j < betasize; j++)
printf ("%8.3e ", gsl_vector_get (s->x, j));
printf ("f()=%7.3f size=%.3f\n", s->fval, size);
}
}
} while (status == GSL_CONTINUE && iter < mp->max_iterations && !ctrl_c);
signal(SIGINT, NULL);
Apop_stopif(iter == mp->max_iterations && mp->verbose, /*continue*/,
1, "Optimization reached maximum number of iterations.");
if (status == GSL_SUCCESS) apopstatus = 0;
apop_data_unpack(s->x, est->parameters);
gsl_multimin_fminimizer_free(s);
auxinfo(est->parameters, i, apopstatus, i->best_ll);
}
/*There is a basically standard location for the log likelihood. Search there, and if you don't
find it, then recalculate it.*/
static double get_ll(apop_data *d, apop_model *est){
int index = est->info ? apop_name_find(est->info->names, "log likelihood", 'r') : -2;
if (index>-2) return apop_data_get(est->info, index);
//last resort: recalculate
return apop_log_likelihood(d, est);
}
static void dim_cycle(apop_data *d, apop_model *est, infostruct info){
double last_ll, this_ll = GSL_NEGINF;
int iteration = 0;
apop_mle_settings *mp = Apop_settings_get_group(est, apop_mle);
double tol = mp->dim_cycle_tolerance;
int betasize = info.beta->size;
Apop_settings_set(est, apop_mle, dim_cycle_tolerance, 0);//so sub-estimations won't use this function.
gsl_vector *paramv = apop_data_pack(est->parameters);
apop_model *full_est = NULL; //an alias
do {
if (mp->verbose){
if (!(iteration++))
printf("Cycling toward an optimum. Listing (dim):log likelihood.\n");
printf("Iteration %i:\n", iteration);
}
last_ll = this_ll;
for (int i=0; i< betasize; i++){
gsl_vector_set(info.beta, i, GSL_NAN);
apop_data_unpack(info.beta, est->parameters);
apop_model *m_onedim = apop_model_fix_params(est);
apop_prep(d, m_onedim);
apop_maximum_likelihood(d, m_onedim);
gsl_vector_set(info.beta, i, m_onedim->parameters->vector->data[0]);
full_est = apop_model_fix_params_get_base(m_onedim);//points to est, but filled.
this_ll = get_ll(d, full_est);//only used on the last iteration.
if (mp->verbose) printf("(%i):%g\t", i, this_ll), fflush(NULL);
apop_model_free(m_onedim);
}
if (mp->verbose) printf("\n");
apop_data_pack(full_est->parameters, paramv);
Apop_settings_add(est, apop_mle, starting_pt, paramv->data);
} while (fabs(this_ll - last_ll) > tol);
Apop_settings_set(est, apop_mle, dim_cycle_tolerance, tol);
gsl_vector_free(paramv);
}
void get_desires(apop_model *m, infostruct *info){
apop_parts_wanted_settings *want = apop_settings_get_group(m, apop_parts_wanted);
info->want_tests = (want && want->tests =='y') ? 'y' : 'n';
info->want_cov = (info->want_tests=='y' || (want && want->covariance =='y'))
? 'y' : 'n';
info->want_info = want ? (want->info =='y' ? 'y' : 'n') : 'y';
//doesn't do anything at the moment.
info->want_predicted = (want && want->predicted =='y') ? 'y' : 'n';
}
int check_method (char *m){
#define Onecheck(str) if (!strcasecmp(m, #str)) return 0;
if(!m || strlen(m)==0) return 0;
Onecheck(NM simplex)
Onecheck(FR cg)
Onecheck(BFGS cg)
Onecheck(PR cg)
Onecheck(Annealing)
Onecheck(Newton)
Onecheck(Newton hybrid)
Onecheck(Newton hybrid no scale)
return 1;
}
/** Find the likelihood-maximizing parameters of a model given data.
\li I assume that \ref apop_prep has been called on your model. The easiest way to guarantee this is to use \ref apop_estimate, which calls this function if the input model has no \c estimate method.
\li All of the settings are specified by adding a
\ref apop_mle_settings struct to your model, so see the many notes there. Notably,
the default method is the Fletcher-Reeves conjugate gradient method, and if your model
does not have a dlog likelihood function, then a numeric gradient will be calculated
via \ref apop_numerical_gradient. Add an \ref apop_mle_settings group to your model
to set tuning parameters or select other methods, including the Nelder-Mead simplex,
simulated annealing, and root-finding.
\param data An \ref apop_data set.
\param dist The \ref apop_model object: \ref apop_gamma, \ref apop_probit, \ref apop_zipf, &c. You can add
an \c apop_mle_settings struct to it (<tt>Apop_model_add_group(your_model, apop_mle,
.verbose=1, .method="PR cg", and_so_on)</tt>).
\return None, but the input model is modified to include the parameter estimates, &c.
\li There is auxiliary info in the <tt>->info</tt> element of the post-estimation struct. Get elements via, e.g.:
\code
apop_model *est = apop_estimate(your_data, apop_probit);
int status = apop_data_get(est->info, .rowname="status");
if (status)
//trouble
else
//optimum found
apop_data_print(est->parameters); //Here are the estimated parameters
\endcode
\li During the search for an optimum, ctrl-C (SIGINT) will halt the search, and the function will return whatever parameters the search was on at the time.
*/
void apop_maximum_likelihood(apop_data * data, apop_model *dist){
apop_mle_settings *mp = apop_settings_get_group(dist, apop_mle);
if (!mp) mp = Apop_model_add_group(dist, apop_mle);
apop_score_type ms = apop_score_vtable_get(dist);
Apop_stopif(check_method(mp->method), return, 0, "You set the method='%s', "
"which is not on my list of allowable methods. See the apop_mle_settings "
"documentation for the list of options", mp->method);
if (!mp->method || !strlen(mp->method)) mp->method = ms ? "FR cg" : "NM simplex";
Apop_stopif(!dist->parameters, dist->error='p'; return, 0, "Not enough information to allocate parameters over which to optimize. If this was not called from apop_estimate, did you call apop_prep first?");
infostruct info = {.data = data,
.use_constraint = 1,
.path = mp->path,
.model = dist};
get_desires(dist, &info);
info.beta = apop_data_pack(dist->parameters);
if (setup_starting_point(mp, info.beta)) return;
info.model->data = data;
if (mp->dim_cycle_tolerance) dim_cycle(data, dist, info);
else if (!strcasecmp(mp->method, "annealing")) apop_annealing(&info); //below.
else if (!strcasecmp(mp->method, "NM simplex")) apop_maximum_likelihood_no_d(data, &info);
else if (!strcasecmp(mp->method, "Newton") ||
!strcasecmp(mp->method, "Newton hybrid")||
!strcasecmp(mp->method, "Newton hybrid no scale")) find_roots (info);
else /* Conjugate Gradient*/ apop_maximum_likelihood_w_d(data, &info);
}
/** Maximum likelihod searches are not guaranteed to find a global optimum, and it can be
difficult to tune a search such that it covers a wide space, but also accurately hones in
on the optimum. In both cases, one could restart the search using a different starting
point or different parameters.
The simplest use of this function is to restart a model at the latest parameter estimates.
\code
apop_model *m = apop_estimate(data, model_using_an_MLE_search);
for (int i=0; i< 10; i++)
m = apop_estimate_restart(m);
apop_data_show(m);
\endcode
By adding a line to reduce the tolerance each round [e.g., <tt>Apop_settings_set(m, apop_mle, tolerance, pow(10,-i))</tt>], you can start broad and hone in on a precise optimum.
You may have a new estimation method, such as first doing a coarse simulated annealing search, then a fine conjugate gradient search. When reading this example, recall that the form for adding a new settings group differs from the form for modifying existing settings:
\code
Apop_model_add_settings(your_base_model, apop_mle, .method=APOP_SIMAN);
apop_model *m = apop_estimate(data, your_base_model);
Apop_settings_set(m, apop_mle, method, APOP_CG_PR);
m = apop_estimate_restart(m);
apop_data_show(m);
\endcode
Only one estimate is returned, either the one you sent in or a new
one. The loser (which may be the one you sent in) is freed, to prevent memory leaks.
\param e An \ref apop_model that is the output from a prior MLE estimation. (No default, must not be \c NULL.)
\param copy Another not-yet-parametrized model that will be re-estimated with (1) the same data and (2) a <tt>starting_pt</tt> as per the next setting (probably
to the parameters of <tt>e</tt>). If this is <tt>NULL</tt>, then copy <tt>e</tt>. (Default = \c NULL)
\param starting_pt "ep"=last estimate of the first model (i.e., its current parameter estimates)<br>
"es"= starting point originally used by the first model<br>
"np"=current parameters of the new (second) model<br>
"ns"=starting point specified by the new model's MLE settings. (default = "ep")
\param boundary I test whether the starting point you give me has magintude greater
than this bound, so I can warn you if there's divergence in your sequence of
re-estimations. (default: 1e8)
\return If the new estimated parameters include any NaNs/Infs, then
the old estimate is returned (even if the old estimate included
NaNs/Infs). Otherwise, the estimate with the largest log likelihood
is returned.
\li This function uses the \ref designated syntax for inputs.
*/
APOP_VAR_HEAD apop_model * apop_estimate_restart (apop_model *e, apop_model *copy, char * starting_pt, double boundary){
apop_model * apop_varad_var(e, NULL);
Nullcheck_m(e, NULL);
apop_model * apop_varad_var(copy, NULL);
char * apop_varad_var(starting_pt, "ep");
double apop_varad_var(boundary, 1e8);
APOP_VAR_ENDHEAD
gsl_vector *v = NULL;
if (!copy) copy = apop_model_copy(e);
apop_mle_settings* prm0 = apop_settings_get_group(e, apop_mle);
apop_mle_settings* prm = apop_settings_get_group(copy, apop_mle);
//copy off the old params; modify the starting pt, method, and scale
if (!strcmp(starting_pt, "es"))
v = apop_array_to_vector(prm0->starting_pt);
else if (!strcmp(starting_pt, "ns")){
int size =sizeof(prm->starting_pt)/sizeof(double);
v = apop_array_to_vector(prm->starting_pt, size);
prm0->starting_pt = malloc(sizeof(double)*size);
memcpy(prm0->starting_pt, prm->starting_pt, sizeof(double)*size);
}
else if (!strcmp(starting_pt, "np")){
v = apop_data_pack(copy->parameters);
prm->starting_pt = malloc(sizeof(double)*v->size);
memcpy(prm->starting_pt, v->data, sizeof(double)*v->size);
}
else if (e->parameters){//"ep" or default.
v = apop_data_pack(e->parameters);
prm->starting_pt = malloc(sizeof(double)*v->size);
memcpy(prm->starting_pt, v->data, sizeof(double)*v->size);
}
Apop_stopif(!apop_vector_bounded(v, boundary), return e,
0, "Your model has diverged (element(s) > %g);"
" returning your original model without restarting.", boundary);
gsl_vector_free(v);
apop_model *newcopy = apop_estimate(e->data, copy);
apop_model_free(copy);
//Now check whether the new output is better than the old
if (apop_vector_bounded(newcopy->parameters->vector, boundary)
&& get_ll(e->data, newcopy) > get_ll(e->data, e)){
apop_model_free(e);
return newcopy;
} //else:
apop_model_free(newcopy);
return e;
}
// Simulated Annealing.
static double annealing_energy(void *in) {
infostruct *i = in;
return negshell(i->beta, i);
}
static double annealing_distance(void *xin, void *yin) {
/** We use the Manhattan metric to correspond to the annealing_step fn below. */
gsl_vector *from = apop_vector_copy(((infostruct*)xin)->beta);
gsl_vector *to = apop_vector_copy(((infostruct*)yin)->beta);
gsl_vector_div(from, ((infostruct*)xin)->starting_pt);
gsl_vector_div(to, ((infostruct*)xin)->starting_pt);//starting pts are the same.
return apop_vector_distance(from, to, .metric='m');
}
static void annealing_check_constraint(infostruct *i){
apop_data_unpack(i->beta, i->model->parameters);
if (i->model->constraint && i->model->constraint(i->data, i->model))
apop_data_pack(i->model->parameters, i->beta);
}
static void annealing_step(const gsl_rng * r, void *in, double step_size){
/** The algorithm:
--randomly pick dimension
--shift by some amount of remaining step size
--repeat for all dims
This will give a move \f$\leq\f$ step_size on the Manhattan metric.
*/
infostruct *i = in;
int sign;
double amt, scale;
double cutpoints[i->beta->size+1];
cutpoints[0] = 0;
cutpoints[i->beta->size] = 1;
for (size_t j=1; j< i->beta->size; j++)
cutpoints[j] = gsl_rng_uniform(r);
for (size_t j=0; j< i->beta->size; j++){
sign = (gsl_rng_uniform(r) > 0.5) ? 1 : -1;
scale = gsl_vector_get(i->starting_pt, j);
amt = cutpoints[j+1]- cutpoints[j];
*gsl_vector_ptr(i->beta, j) += amt * sign * scale * step_size;
}
annealing_check_constraint(i);
}
static void annealing_print(void *xp) {
apop_vector_show(((infostruct*)xp)->beta);
}
static void annealing_print2(void *xp) { return; }
static void annealing_memcpy(void *xp, void *yp){
infostruct *yi = yp;
infostruct *xi = xp;
*yi = *xi;
yi->beta = apop_vector_copy(xi->beta);
}
static void *annealing_copy(void *xp){
infostruct *out = malloc(sizeof(infostruct));
annealing_memcpy(xp, out);
return out;
}
static void annealing_free(void *xp){
gsl_vector_free(((infostruct*)xp)->beta);
free(xp);
}
//I abuse the starting point element to hold the list of scaling factors. They can't be zero.
static double set_start(double in){ return in ? in : 1; }
jmp_buf anneal_jump;
static void anneal_sigint(){ longjmp(anneal_jump,1); }
static void apop_annealing(infostruct *i){
apop_model *ep = i->model;
apop_mle_settings *mp = apop_settings_get_group(ep, apop_mle);
Apop_stopif(!mp, ep->error='l'; return, 0, "The model you sent to the MLE function has neither log_likelihood element nor p element.");
gsl_siman_params_t simparams = (gsl_siman_params_t) {
.n_tries = mp->n_tries,
.iters_fixed_T = mp->iters_fixed_T,
.step_size = mp->step_size,
.k = mp->k,
.t_initial = mp->t_initial,
.mu_t = mp->mu_t,
.t_min = mp->t_min};
gsl_rng *r = mp->rng ? mp->rng : apop_rng_get_thread();
//these two are done at apop_maximum_likelihood:
//i->beta = apop_data_pack(ep->parameters);
//setup_starting_point(mp, i->beta);
int betasize = i->beta->size;
int apopstatus = -1;
i->starting_pt = apop_vector_map(i->beta, set_start);
i->use_constraint = 0; //negshell doesn't check it; annealing_step does.
gsl_siman_print_t printing_fn = NULL;
if (mp && mp->verbose>1) printing_fn = annealing_print;
else if (mp && mp->verbose) printing_fn = annealing_print2;
annealing_check_constraint(i); //shift starting point if needed.
if (setjmp(i->bad_eval_jump)) {
apopstatus = -1;
goto done;
}
if (!setjmp(anneal_jump)){
signal(SIGINT, anneal_sigint);
gsl_siman_solve(r, // const gsl_rng * r
i, // void * x0_p
annealing_energy, // gsl_siman_Efunc_t Ef
annealing_step, // gsl_siman_step_t take_step
annealing_distance, // gsl_siman_metric_t distance
printing_fn, // gsl_siman_print_t print_position
annealing_memcpy, // gsl_siman_copy_t copyfunc
annealing_copy, // gsl_siman_copy_construct_t copy_constructor
annealing_free, // gsl_siman_destroy_t destructor
betasize, // size_t element_size
simparams); // gsl_siman_params_t params
}
signal(SIGINT, NULL);
apop_data_unpack(i->beta, i->model->parameters);
apop_estimate_parameter_tests(i->model);
apopstatus = 0;
done:
if (mp->rng) r = NULL;
auxinfo(i->model->parameters, i, apopstatus, i->best_ll);
}
/* This function calls the various GSL root-finding algorithms to find the zero of the score.
Cut/pasted/modified from the GSL documentation. */
static apop_model * find_roots (infostruct p) {
const gsl_multiroot_fsolver_type *T;
gsl_multiroot_fsolver *s;
apop_model *dist = p.model;
apop_mle_settings *mlep = apop_settings_get_group(dist, apop_mle);
int status=0, betasize = p.beta->size,
apopstatus = -1; //assume failure until we score a success.
size_t iter = 0;
gsl_multiroot_function f = {dnegshell, betasize, &p};
T = !strcasecmp(mlep->method, "Newton") ? gsl_multiroot_fsolver_dnewton
: !strcasecmp(mlep->method, "Newton hybrid no scale") ? gsl_multiroot_fsolver_hybrids
: gsl_multiroot_fsolver_hybrid;
s = gsl_multiroot_fsolver_alloc (T, betasize);
gsl_multiroot_fsolver_set (s, &f, p.beta);
do {
iter++;
if (setjmp(p.bad_eval_jump)) break;
status = gsl_multiroot_fsolver_iterate (s);
if (!mlep || mlep->verbose)
printf ("iter = %3zu x = % .3f f(x) = % .3e\n", iter, gsl_vector_get (s->x, 0), gsl_vector_get (s->f, 0));
if (status) /* check if solver is stuck */
break;
status = gsl_multiroot_test_residual (s->f, mlep->tolerance);
} while (status == GSL_CONTINUE && iter < mlep->max_iterations);
if (GSL_SUCCESS) apopstatus = 0;
Apop_notify(2, "status = %s\n", gsl_strerror(status));
apop_data_unpack(s->x, dist->parameters);
gsl_multiroot_fsolver_free (s);
gsl_vector_free (p.beta);
auxinfo(dist->parameters, &p, apopstatus, 0); //root-finders don't store best val.
return dist;
}