-
Notifications
You must be signed in to change notification settings - Fork 0
/
cat_cards.tex
900 lines (716 loc) · 26.1 KB
/
cat_cards.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
\documentclass[onecard,frame]{flashcards}
\cardfrontstyle[\large\slshape]{headings}
\cardbackstyle{empty}
\cardfrontfoot{Category Theory}
%\usepackage{amsfonts}
\usepackage{amssymb,amsmath,tikz-cd,xspace}
\usepackage[T1]{fontenc}
\begin{document}
\input{tex.macros}
\long\def\Comdiag#1{
\begin{center}
\begin{tikzcd}[ampersand replacement=\&]
#1
\end{tikzcd}
\end{center}
}
\Card[Intro]{Author, copyleft}{Ben Klemens, CC BY/SA/NC}
\Card{Domain of $f$}{ For $f:X\to Y$, $X$. \atype{Fn}}
\Card{Codomain of $f$}{ For $f:X\to Y$, $Y$. \atype{Fn}}
\card{Injective}{
Points map to different values: for $F:A\to B$, $f(x) = f(y)$ only if $x=y$.
}
\Card{Surjective}{Given $f:X\to Y$, $\forall x\in X$, $\exists y\in Y \ni f(x)=y$}
\Card{Composition of $f$ and $g$}{
As a diagram,
\Comdiag{
X \arrow[r,"f"] \&Y \arrow[r, "g"] \& Z
}
Written $g \circ f: X\to Z$.
\atype{Any}
}
\Card{$\Hom{set}(X,Y)$}{The set of functions $X\to Y$}
\Card{Equality of function}{
$f:X\to Y$ and $g:X\to Y$ are equal iff $f(x)=g(x), \forall x \in X$
}
\Card{Identity function on $X$}{
${\rm id}_X:X\to X$ such that ${\rm id}_X(x) = x, \forall x\in X$.
}
\Card{Isomorphism}{
A one-to-one correspondence.
\Comdiag{
X \arrow[r,"\cong"] \&Y
}
There exists a function $g:Y\to X$ such that
$g \circ f = {\rm id}_X$ and
$f \circ g = {\rm id}_Y$.
}
\Card[Characteristics]{Properties of an isomorphism}{
\items{
\item Reflexive: Any set is isomorphic to itself.
\item Commutative: if $f:A\to B$ has inverse $g:B\to A$, then $g$ has inverse $f$.
\item Transitive: $A$ isomorphic to $B$ and $B$ isomorphic to $C$ $\Rightarrow$ $A$ is
isomorphic to $C$.
}
}
\card{Sets are isomorphic}{There exists at least one isomorhpism between them.}
\Card[Notation]{$\underline n$}{The set $\{1, 2,\dots n\}$}
\Card{Cardinality of finite set $X$}{$|X| = n$ iff
\Comdiag{
X \arrow[r,"\cong"] \&\underline n
}
}
\Card[Lemma]{Cardinality of $A$ and $B$ given
\Comdiag{A \arrow[r,"\cong"] \&B}}{|A| = |B|}
\Card{A diagram commutes}{
All paths from top left to bottom right are equal. E.g.,
\Comdiag{
A \ar[r, "f"] \ar[dr,"h"'] \& B\ar[d, "g"]\\
\& C
}
commutes iff $g\circ f = h$.
}
\card{Endomap}{A function whose domain and codomain are the same, so of the form $f:A\to A$.}
\card{Endofunctor}{A functor mapping a category to itself.}
\card{Lifting problem}{
aka {\em choice}
What are the functions $f$ that allow this diagram to commute?
\Comdiag{
X \ar[r, dashrightarrow, "f"] \ar[dr, "h"] \& Y \arrow [d, "g"]\\
\& Z
}
}
\card{Determination problem}{
AKA {\em extension}\\
What are the functions $g$ that allow this diagram to commute?
\Comdiag{
X \ar[r, "f"] \ar[dr, "h"] \& Y \arrow [d, dashrightarrow, "g"]\\
\& Z
}
If any, $h$ is determined by $f$.
}
\card{Monotone transformation}{If $a \leq b$ then $f(a) \leq f(b)$.}
\Card{Product of two sets}{
The set of ordered pairs. For sets $X$ and $Y$,
$$\{(x,y)|x\in X, y\in Y\}.$$
}
\Card{Projection function $\pi_i$}{
Given a product $X\times Y$ with elements $(x, y)$, $\pi_1: X\times Y \to X$ produces
$x$. Similarly for $\pi_2$.
\Comdiag{
\& X \times Y \ar[dl,"\pi_1"'] \ar[dr,"\pi_2"]\\
X \& \& Y
}
\atype{Hom}
}
\Card{Universal property of projections}{
For any set A and any $f:A\to X$ and $g:A\to Y$, $\exists$ a unique $f\times g$ so this commutes:
\Comdiag{
\& X\times Y \ar[dl,"\pi_1"'] \ar[dr,"\pi_2"] \\
X \& \& Y \\
\& A \ar[ul, "\forall f"] \ar[ur, "\forall g"'] \ar[uu, dashrightarrow, "f\times g"]
}
\atype{Hom}
}
\card{Involution}{
A function such that $f(f(x))=id$.
}
\card{Idempotent}{
A function such that $f(x)=f(f(x))$.
}
\Card[Notation]{$X\sqcup Y$}{
The union of the elements of $X$ and $Y$, via indicator functions $i_1: X\to X\sqcup Y$ and $i_2$:
\Comdiag{
X \ar[dr,"i_1"'] \& \& Y \ar[dl,"i_2"] \\
\& X\sqcup Y
}
Elements of $X\sqcup Y$ have a source indicator, so if $z\in X$ and $z\in Y$,
$i_1z, i_2z \in X\sqcup Y$.
\atype{Hom}
}
\Card{Universal property of coproducts}{
For any $f:X\to A$, $g:Y\to A$, $\exists$ a unique $f\sqcup g:X\sqcup Y\to A$:
\Comdiag{
\& A \\
X \ar[dr,"i_1"'] \ar[ur,"\forall f"] \& \& Y \ar[dl,"i_2"] \ar[ul,"\forall g"']\\
\& X\sqcup Y \ar[uu, dashrightarrow, "f\sqcup g"]
}
\atype{Hom}
}
\Card{Fiber product}{
Given \Comdiag{
\& Y \ar[d,"g"]\\
X \ar[r, "f"] \& Z
}
$X \times_Z Y \equiv \{(x,z,y)| f(x)=z=g(y)\}$.
}
\Card{Pullback}{
Any set $W$ isomorphic to the fiber product $X\times_Z Y$, giving the commutative diagram
\Comdiag{
W \ar[r, "\pi_2"] \ar[d, "\pi_1"'] \& Y \ar[d,"g"]\\
X \ar[r, "f"] \& Z
}
}
\Card{Universal property for pullbacks}{
Given $t:X\to Z$ and $u:Y\to Z$,
$\exists$ a unique function $f\times_Z g: A\to X\times_z Y$ such that
\Comdiag{
X\times_Z Y \arrow[drr, bend left, "\pi_1"] \arrow[ddr, bend right, "\pi_2"] \& \& \\
\& A\arrow[ul, dotted, "f\times_Z g" description] \arrow[r, "\forall f"] \arrow[d, "\forall g"]
\& Y \arrow[d, "u"] \\
\& X \arrow[r, "t"] \& Z
}
}
\Card{Coequalizer}{
Given the equivalence relation $\{(f(x), g(x))|x\in X\}\subseteq Y\times Y$,
$Coeq(f,g)\equiv Y \backslash f(x)\sim g(x)$
\Comdiag{
Z \arrow[r, shift left,"f"] \arrow[r,"g"'] \&Y \arrow[r] \& Coeq(f,g)
}
}
\Card{Initial set}{
A set $S$ such that for every set $A$ there exists a unique mapping $S\to A$.
}
\Card{Retract section, retract projection}{
Given $f:X\to Y$, $g:Y\to X$ and $g\circ f =id_X$,
\items{
\item $f$ is a retract section
\item $g$ is a retract projection
}
}
\Card[Notation]{$Y^X$}{$Y^X\equiv \Hom{Set}(X, Y)$.}
\Card[Proposition]{Currying}{
For any sets $A, X, Y$, $\exists$ a bijection
$$C: \Hom{Set}(X\times A, Y) \to \Hom{Set}(X, \Hom{Set}(A, Y))$$
i.e.,
$$C: Y^{X\times A} \to Y^{A^X}$$
}
\card{Cat has exponentiation}{
For any objects $a, b$, $\exists$ an object $b^a=\Hom{Set}(a,b)$
and evaluation fn $ev: b^a\times a \to b$ $\ni \forall$ objects $c$ and arrows
$g:c\times a \to b$, $\exists!\hat g:c\to b^a$ so this commutes:
\Comdiag{
b^a\times a \ar[dr, "ev"] \\
\& b\\
c\times a \ar[uu, dashrightarrow, "\hat g\times {\bf 1}_a"] \ar[ur, "g"]
}
}
\card{Cartesian closed}{A category has exponentiation, and a terminal element (1).}
\Card{Span}{
\Comdiag{
\& R \ar[dl, "f"'] \ar[dr, "g"]\\
X\& \& Y
}
}
\Card{Composite Span}{
Two spans joined by their fiber product.
\Comdiag{
\& \& R\times_Y R' \ar[dl] \ar[dr]\\
\& R \ar[dl, "f"'] \ar[dr, "g"]\& \& R' \ar[dl, "f'"'] \ar[dr, "g'"]\\
X\& \& Y \& \& Z
}
}
\Card{Equalizer}{
$Eq(f, g)\equiv {x\in X|f(x)=g(x)}$.
\Comdiag{Eq(f, g) \ar[r] \& X \ar[r, shift left, "f"] \ar[r, "g"'] \& Y
}
}
\card{skeleton category}{A category where every isomorphism is an equality. Every small
category has a skeleton subcategory.}
\card{Terminal set}{A set $S$ such that for every set $X$, there exists a unique mapping $f:X\to S$.}
\card{Diagram, index set}{
A smallish category whose mapping to a category is intended to select a few elements
and relations between them.
}
\card{Cone}{A mapping from a diagram to a category.}
\card{Cocone}{A mapping from a category to a diagram.}
\card{Limit}{A cone $L$ such that for all other cones $A$, there exists a mapping $A\to L$. \atype{Fnctr}}
\card{Colimit}{A cocone $L$ such that for all other cocones $A$, there exists a mapping $L\to A$. \atype{Fnctr}}
\Card[Notation]{$x\sim_R y$ or $x\sim y$}{
The equivalence relation, $R\subseteq X\times X$, where
\items{
\item $(x,x)\in R$ (reflexive)
\item $(x,y)\in R \Leftrightarrow (y, x)\in R$ (symmetry)
\item $(x,y)\in R + (y, z)\in R \rightarrow (y, z)\in R$ (transitivity)
}
$x\sim_R y \equiv (x,y) \in R.$
}
\card{Complete category/co-complete category}{
A category where every diagram has a limit/co-limit
}
\Card{Equivalence class}{
Given an equivalence relation $\sim$ on the set $X$, a set $A$ where
\items{
\item $A\neq \emptyset$
\item $x\in A$ and $y\in A \rightarrow x\sim y$
\item $x\in A$ and $x\sim y \rightarrow y\in A$
}
}
\Card{Quotient $X\backslash \sim$}{The set of equivalence classes of $\sim$ in $X$.}
\Card{Fiber sum}{
A {\em pushout}: given $f:Z\to X$ and $g:Z\to Y$, the fiber sum $X\sqcup_Z Y\equiv (X\sqcup Z \sqcup
Y)\backslash \sim$ where $z\sim f(z)$ and $z\sim g(z)$. So,
\Comdiag{
Z \ar[d, "f"'] \ar[r, "g"] \& Y \ar[d, "i_2"] \\
X \ar[r, "i_1"] \& X\sqcup_Z Y
}
\atype{Hom}
}
\Card{Universal property for pushouts}{
\small{Given $t:Z\to X$ and $u:Z\to Y$,
$\exists$ a unique function $f\sqcup_Z g: X\sqcup_z Y \to A$ such that
\Comdiag{
Z \ar[d, "t"'] \ar[r, "u"] \& Y \ar[d, "g"] \ar[ddr, bend left, "i_2"] \\
X \ar[r, "f"] \ar[drr, bend right, "i_1"] \& A \\
\& \& X\sqcup_Z Y \arrow[ul, dotted, "f\sqcup_Z g" description]
}
So, $f = (f\sqcup_Z g)\circ i_1$ and $g = (f\sqcup_Z g)\circ i_2$.}
\atype{Hom}
}
\Card{Power set}{For a given set $S$, the set of subsets of $S$. Here notated ${\mathbb P}(S)$}
\card[Notation]{$\Omega$}{The set $\{$True, False $\}$}
\Card[Proposition]{For an arbitrary set $S$, how do $\Omega$ and ${\mathbb P}(S)$ relate?}{
$\exists$ an isomporphism $f:$\Comdiag{ \Hom{Set}(S,\Omega) \arrow[r,"\cong"] \& {\mathbb P}(S) }
}
\Card{Characteristic function}{
For a set $S'\subseteq S$, the mapping $S\to \Omega$
marking an element true iff it is in $S'$.
}
\Card{Epimorphism}{
$F$ is {\em epic} or an {\em epi} iff $g_1\circ f = g_2\circ f \Rightarrow g_1 = g_2$.
\Comdiag{
X \arrow[r,"f"] \&Y \arrow[r, shift left,"g_1"] \arrow[r,"g_2"'] \& Z
}
In {\bf Set}, $f$ is surjective iff it is epic.
\atype{Fnctr}
}
\Card{Monomorphism}{
$F$ is {\em monic} or {\em mono} iff $f\circ g_1 = f\circ g_2 \Rightarrow g_1 = g_2$.
\Comdiag{
Z \arrow[r, shift left,"g_1"] \arrow[r,"g_2"'] \&Y \arrow[r,"f"] \& X
}
In {\bf Set}, $f$ is injective iff it is monic.
\atype{Fnctr}
}
\card{Subobject classifier}{
In a category with terminal object $\bf 1$,
an object $\Omega$ and an arrow $true:{\bf 1}\to \Omega$, such that for any monic
$f:a\to d$, $\exists! \chi_f:d\to Omega$ so this is a pullback:
\Comdiag{
a \ar[r, "f"] \ar[d, "!"] \& d \ar[d, "\chi_f"]\\
{\bf 1} \ar[r, "true"] \& \Omega
}
}
\card{Isomorphism}{A mapping that is epic and monic.}
\Card[Theorem]{ If $f$ is monomorphic, what can we say about $f'$?
\Comdiag{
X\times_Z Y \ar[r, "f'"] \ar[d, "g"'] \& Y \ar[d,"g'"]\\
X \ar[r, "f"] \& Z
}
} {
$f'$ is also monomorphic. Prove via the defn of mononomrpism via $B$ and $X$ (so $c=d$), then the
universal property of pullbacks to show $a=b$.
\Comdiag{
B \ar[r, shift left, "a"] \ar[r, "b"'] \ar[dr, shift left, "c"] \ar[dr, "d"'] \&
X\times_Z Y \ar[r, "f'"] \ar[d, "g"'] \& Y \ar[d,"g'"]\\
\&X \ar[r, "f"] \& Z
}
\atype{Fnctr}
}
\Card[Theorem]{
If $f$ is epic, what can we say about $f'$?
\Comdiag{
Z \ar[d, "g"'] \ar[r, "f"] \& Y \ar[d, "g'"] \\
X \ar[r, "f'"] \& X\sqcup_Z Y
}
} {$f'$ is also epic. Prove via the defn of epimorpism via $B$ and $Y$ (so $a=b$), then the
universal property of pullbacks to show $c=d$.
\Comdiag{
Z \ar[r, "f'"] \ar[d, "g"'] \& Y \ar[d,"g'"]\&
B \ar[l, shift left, "b"] \ar[l, "a"'] \ar[dl, shift left, "d"] \ar[dl, "c"'] \\
X \ar[r, "f'"] \& X\sqcup_Z Y
}
\atype{Fnctr}
}
\Card[Corollary]{
What is $A$ in
\Comdiag{A \ar[r, "f'"] \ar[d, "i"] \& \{1\} \ar[d, "True"]\\
X \ar[r, "f"'] \& \Omega
}
}{
$X\times_{\Omega}\{1\}$
}
\Card{Multiset}{
A sequence $X\equiv (E,B,\pi)$ where $E$ and $B$ are sets and $\pi : E \to B$ is a surjective function.
}
\Card[Question]{
Given two multisets $(E,B, \pi)$ and $(E',B', \pi')$, what would a mapping
between them look like?
}{
A pair of functions $f_1:E\to E'$ and $f_2:B\to B'$ such that
\Comdiag{E \ar[r, "f_1"] \ar[d, "\pi"'] \& E' \ar[d, "\pi'"]\\
B \ar[r, "f_2"'] \& B'
}
\atype{Fn}
}
\Card{Pseudomultiset}{
A multiset where $\pi$ is not surjective.
A sequence $X\equiv (E,B,\pi)$ where $E$ and $B$ are sets and $\pi : E \to B$.
}
\Card{Relative set over B}{A pair $(E, \pi)$ with $\pi:E \to R$.}
\Card[Question]{
Given two relative sets over the same $B$,$(E, \pi)$ and $(E', \pi')$, what would a mapping
between them look like?
}{
\Comdiag{E \ar[rr, "f_1"] \ar[dr, "\pi"'] \& \& E' \ar[dl, "\pi'"]\\
\& B
}
\atype{Fn}
}
\Card{$A$-indexed set}{A collection of sets $S_a$, one for each $a\in A$.}
\Card{Closed mapping}{For any element $x\in S$, $f(x)\in S$.}
\Card{Magma}{A set with a closed mapping.}
\Card{Associative mapping}{
A mapping $f:S\times S$ is associative iff $f(s_1, f(s_2, s_3)) = f(f(s_1, s_2), s_3)$.
}
\Card{Semigroup}{A set with a closed, associative mapping.
A magma whose operation is also associative.}
\card{Abelian group}{
AKA a commutative group:
a group whose operation is also commutative: $a\cdot b = b\cdot a$.
}
\Card{Monoid}{
A set with an operation that is closed and associative,
and an identity element where $f(x)=x$.
I.e., a semigroup with an identity.
}
\Card{Trivial monoid}{
A monoid over a set whose sole element is the identity, $(\{id\}, id, \cdot)$.
Written as $\underline 1$.
}
\Card{List in a set $X$}{
A pair $(n, f)$, where $f:\underline n \to X$. May be denoted as
$(n, f) = [f(1), f(2), \dots, f(n)]$.
}
\Card[notation]{Concatenation of lists, $++$}{
Given $L=(n, f)$ and $L'=(n',f')$ a new list $L++L' =(n+n', f++f')$ where $f++f'$
matches $f(x)$ for $x\leq n$, then $f'(x-n)$ for $x>n$.
}
\Card{Free monoid generated by a set $X$}{
A triplet $($List$(X), [ ], ++)$, where the first element is the set of all lists ($n,
f)$ where $n=|X|$.
}
\Card{Presented monoid}{
Let $\sim$ indicate the equivalence relation on List$(G)$ (the set of all lists
on $G$) generated by $(x\cdot f(i)\cdot y \sim x\cdot f'(i)\cdot y)$, where $f$
and $f'$ are in List$(G)$.
The monoid presented by the generator $G$ and relations $f(i), f'(i)$ is the set
List$(G)\backslash \sim$, the identity $[ ]$, and the operation $++$.
}
\Card{Cyclic monoid}{
A presented monoid based on a generator with a single element.
}
\Card{Monoid action}{
Given a monoid $(M, id, \cdot)$ and a set $S$, the action $\circlearrowleft:M\times S
\to S$ satisfies
\items{
\item $id \circlearrowleft s = s, s\in S$
\item $m \circlearrowleft (n \circlearrowleft s) = (m\cdot n) \circlearrowleft s$
}
}
\Card{Finite state machine}{
\items{
\item A set of symbols, the input alphabet $\Sigma$
\item A set of states $S$
\item A transition function $\delta: \Sigma \times S\to S$
\item An initial state $\in S$
\item A set of final states $\subseteq S$
}
}
\Card[Proposition]{How is a finite state machine expressed via monoids?}{
Given $\delta: \Sigma \times S \to S$, let the monoid be the free monoid based on
List$(\Sigma)$; then the state machine is an action of the free monoid on $S$.
}
\card{Monoid homomorphism}{
For $(S, id, \cdot)$ and $(S', id', \cdot')$, a M. H. $f:S\to S'$ has $f(id)=id'$ and
$f(s_1\cdot s_2) = f(s_1)\cdot' f(s_2)$.
}
\card{$\Hom{Mon}(M,M')$}{
The set of monoid homomorphisms $f:M\to M'$.
}
\card{Trivial monoid homomrphism}{
Given the trivial monoid $\underline 1$, $\exists$ monoid homomorphisms $f_1:M\to
\underline 1$ and $f_2: \underline 1 \to M$
}
\card[Proposition]{Given $M=({\mathbb Z}, 0, +)$ and $M'=({\mathbb N}, 0, +)$, what monoid
homomorphisms exist}{
Only the trivial homomorphism.
}
\card[Notation]{$\Delta_f(\alpha)$}{
Chain the monoid homomorphism $f:M\to M'$ and the action $\alpha:(S, M') \to S$ to
generate a new action $\Delta_f(\alpha): (S,M) \to S$.
Named {\em the restriction of scalars along $f$}, due to an application to ${\mathbb R}$ and ${\mathbb C}$.
}
\card{Group}{
A set with a binary operation that is
\items{
\item closed
\item associative,
\item has an identity, and
\item has an inverse
}
I.e., a monoid where every element has an inverse.
}
\card{Ring}{
A set $R$ with two binary operations, annotated $+$ and $\cdot$, where
\items{
\item $\{R, +\}$ is an abelian (commutative) group
\item $\{R, \cdot\}$ is a monoid
\item The distributive property holds:
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)\\
(b + c) \cdot a = (b \cdot a) + (c \cdot a) $$
}
}
\card{Poset}{
Partially ordered set: a set $S$ and relation $\leq$ where
\items{
\item $a \leq a$ (reflexive)
\item $a \leq b$ and $b \leq a \Rightarrow a=b$ (antisymmetry)
\item $a \leq b$ and $b \leq c \Rightarrow a\leq c$ (transitivity)
} for all $a, b, c \in S$.
A preorder with the addition of the antisymmetry condition.
}
\card{Graph}{
A collection $(V, A, src, tgt)$:
\items{
\item $V$ a set (vertices)
\item $A$ a set (arrows)
\item $src:A\to V$ a fn giving arrow heads
\item $tgt:A\to V$ a fn giving arrow tails
}
}
\card{Supremum}{
Least upper bound of a set $S$. For any $s\in S$, the supremum $v$
\items{
\item $s\leq v$
\item If $\exists w \ni s\leq w \forall s\in S$, $v\leq w$.
}
}
\card{$\omega$-chain in a poset}{
A sequence $a\leq b \leq c\leq \dots$.
Repeats are OK: $a\leq b\leq b\leq b\dots$.
}
\card{$\omega$-complete partial order, strict $\omega$-CPO}{
Any $\omega$-chain has a supremum.
Strict: any $\omega$-chain also has a minimum element.
}
\card[Exercise]{Express a unidirectional bipartite graph via a commutative diagram with a span}{
The top triangle $A, L, src$ and bottom triangle $A, R, tgt$ commute:
\Comdiag{
\& L \ar[dr,"i_1"]\\
A \ar[ur, "f"] \ar[dr, "g"] \ar[rr, shift left,"src"] \ar[rr,"tgt"'] \& \& L \sqcup R \\
\& R \ar[ur,"i_2"]\\
}
\atype{Fn}
}
\card{Graph homomorphism}{
Two functions $f_0:V\to V'$ and $f_1:A\to A'$ such that both $src$ and $tgt$ commute:
\Comdiag{
A \ar[r,"f_1"] \ar[d, "src"']\& A' \ar[d, "src'"] \& \& A \ar[r,"f_1"] \ar[d, "tgt"']\& A' \ar[d, "tgt'"] \\
V \ar[r,"f_0"] \& V'
\& \& V \ar[r,"f_0"] \& V'
}
\atype{Fn}
}
\card{Discrete graph, $Disc({\bf S})$}{For a set $S$, the graph with:
\items{
\item nodes = $S$
\item arrows = $\emptyset$
\item sources = trivial function $!: \emptyset \to S$
\item targets = trivial function $!: \emptyset \to S$
}
}
\card{Terminal category}{
The discrete graph for a single element.
}
\card{Binary relation}{For the set $X$, a subset $R\subseteq X\times X$.}
\card[Notation]{$\leq$}{$s\leq s'$ iff $(s, s')\in R$, a binary relation $R\subseteq S\times S$.}
\card{Preorder}{
$\leq$ is a preorder iff
\items{
\item $s\leq s$ (reflexivity)
\item $s\leq s'$ and $s' \leq s'' \Rightarrow s\leq s''$ (transitivity)
}
}
\card{Partial order}{
A preorder with antisymmetry.
$\leq$ is a partial order iff
\items{
\item $s\leq s$ (reflexivity)
\item $s\leq s'$ and $s' \leq s'' \Rightarrow s\leq s''$ (transitivity)
\item $s\leq s'$ and $s' \leq s \Rightarrow s= s''$ (antisymmetry)
}
}
\card{Linear order}{
A partial order with comparability.
$\leq$ is a linear order iff
\items{
\item $s\leq s$ (reflexivity)
\item $s\leq s'$ and $s' \leq s'' \Rightarrow s\leq s''$ (transitivity)
\item $s\leq s'$ and $s' \leq s \Rightarrow s= s''$ (antisymmetry)
\item Either $s\leq s'$ or $s' \leq s$ (comparability)
}
}
\card{Clique in a preorder}{
For a preorder $(S, \leq)$, a set $C\in S$ such that for every $s, s' \in C$, $s\leq s'$.
}
\card{Preorder generated by a binary relation}{
Start with an aribtrary binary relation $R\subseteq S\times S$.
Build the preorder generated by $R$, $R''$ via
\items{
\item $R'\equiv R \cup \{(s, s)| s\in S\}$ (make it reflexive),
\item $R''\equiv R' \cup \{(x, z)\in S\times S| (x,y), (y,z)\in S\times S\}$
(make it transitive)
}
}
\card{For a preorder $(S, \leq)$, the meet of $a, b\in S$}{
An element $c$ such that
\items{
\item $c\leq a$ and $c\leq b$
\item For any $d\in S$, $d\leq a$ and $d\leq b \Rightarrow d\leq c$
}
Note that for the preorder $($set of sets$, \subseteq)$, $c$ is $a\wedge b$.
}
\card{For a preorder $(S, \leq)$, the join of $a, b\in S$}{
An element $c$ such that
\items{
\item $a\leq c$ and $b\leq c$
\item For any $d\in S$, $a\leq d$ and $b\leq d \Rightarrow c\leq d$
}
Note that for the preorder $($set of sets$, \subseteq)$, $c$ is $a\vee b$.
}
\card{Morphism of preorders}{
Given $(S, \leq)$ and $(S', \leq')$, a function $f:S\to S'$ such that
$$s_1\leq s_2 \Rightarrow f(s_1)\leq' f(s_2).$$
}
\card{Discrete preorder on $S$}{$$s\leq s' { \rm\ iff\ } s=s'.$$}
\card{Indiscrete preorder on $S$}{$$s\leq s',\ \forall s, s'\in S.$$}
\card{Category}{
\items{
\item A collection of objects, $Ob({\cal C})$
\item $\forall x, y\in Ob({\cal C})$, the Hom-set $\Hom{\cal C}(x, y)$ listing morphisms $x\to y$
\item $\forall x\in Ob({\cal C})$, an identity morphism on $x$, $id_x \in \Hom{\cal C}(x, x)$
\item A composition formula that is associative and correctly handles the identitity morphisms,
$$\circ: \Hom{\cal C}(y, z) \times \Hom{\cal C}(x, y) \to \Hom{\cal C}(x, z)$$
}
}
\card[Sub-defintion]{Properties of $\circ$ for a category}{
\items{
\item For any $f:x\to y$, $f\circ id_x = f$ and $id_y \circ f = f$
\item Associativity: with $f:w\to x$, $g:x\to y$, $h:y\to z$, $$h\circ(g\circ f) = (h
\circ g)\circ f$$
}
}
\card{The category {\bf Set}}{
\items{
\item The set of sets $S$
\item $\forall$ sets $X, Y\in S$, the set of mappings $f:X\to Y$,
\item including the identity morphism $id_x : X\to X$ for any $X\in S$.
\item The usual function composition formula
}
}
\card{The category {\bf Fin}}{
The category of sets with finite cardinality.
\items{
\item Objects are finite sets
\item Morphisms and composition formula are as with {\bf set}
}
}
\card{The category {\bf Mon}}{
\items{
\item The set of monoids $(M, id, \cdot)$
\item For any two monoids, the set of monoid homomorphisms between them.
\item Monoid homomorphisms are defined via functions $f:M\to M'$ and $g:M'\to M''$;
composing the functions to $g\circ f$ generates a morphism composition.
}
}
\card{The category {\bf Grp}}{
\items{
\item The set of groups $(M, id, \cdot)$ (i.e., monoids where $\cdot$ is invertible)
\item Morphisms and composition are defined as with {\bf Mon}
}
}
\card{The category {\bf Grpd}}{
Groupoids: a category where every morphism is an isomorphism.
}
\card{The category {\bf PrO}}{
The set of preorders $(S, \leq)$, with the usual morphisms on preorders of the form
$f:S\to S'$. Composition of functions induces composition of $\Hom{Preorders}$
}
\card{The category {\bf FLin}}{The set of finite linear orders $(S, \leq)$.}
\card{The category {\bf Grph}}{The set of graphs and graph homomorphisms between them.}
\card{The category {\bf GrIn}}{
The graph indexing category
\items{
\item Objects: \{A, V\} (one arrow, one vertex)
\item Mappings: $src: A\to V$; $tgt: A\to V$
}
}
\card{Free category generated by a graph}{
Vertices are category objects; arrows are morphisms. Identity arrows and all arrow
compositions are included.
}
\card[Notation]{$[1] \in {\bf Cat}$}{
The free category generated by the graph \Comdiag{v_1 \ar[r] \& v_2} \atype{Hom}
}
\card{Isomorphism between objects in a category}{
A morphism $f:X\to Y$, $X,Y\in Ob({\cal C})$, such that $\exists G:Y\to X$ such that
$g\circ f = id_x$ and $f\circ g = id_y$.
}
\card{Endomorphism}{A mapping from an object to itself.}
\card{Automorphism}{
An isomorphic mapping from an object to itself.
An endomorphism that is also an isomorphism.
}
\card{Functor}{
For two categories {\bf C} and {\bf D}:
\items{
\item Object map: for every $x\in Ob(C)$, an $F(x)\in Ob(D)$
\item Function map: for every $f:A\to B$, an $F(f)$ where $F(f:A\to B) = F(f): F(A)\to F(B)$
\item Preserves identity morphisms: $F(id_x)=id_{f(x)}$
\item Preserves composition: $F(g\circ f)=F(g)\circ F(f)$
}
}
\card[Exercise]{Express monoid actions via categories}{
Define {\bf Mon} with one object, morphisms representing the monoid's elements, and composition
in {\bf Mon} representing the monoid's function.
Define {\bf Set} as one object, and one element of $Hom(S,S)$ per $S\to S$ morphism.
Curry $\circlearrowleft:M\times S \to S$ to $\circlearrowleft:M\to Hom(S, S)$, giving the
functor {\bf Mon} $\to$ {\bf Set}.
}
\card{Natural transformation}{
Given two categories {\bf C} and {\bf D}, and two functors $F$ and $G$ mapping from
{\bf C} to {\bf D}. Then $\alpha$ is a natural transformation from $F$ to $G$ iff, for any
two elements $a, b \in {\bf C}$, this commutes:
\Comdiag{F(a) \ar[r, "\alpha_a"] \ar[d, "F(h)"] \& F(a) \ar[d, "G(h)"]\\
G(a) \ar[r, "\alpha_b"] \& G(b)
}
\atype{Fnctr}
}
\card{The category {\bf Fun(C, D)}}{
For categories {\bf C} and {\bf D}, objects in the category {\bf Fun(C, D)}
are the set of functors mapping {\bf C} to {\bf D}, and arrows are the natural
transformations between those functors.
}
\card{stalk, fibre}{
Partition $A$ into disjoint sets indexed by $i\in I$. Let $p:A\to I$ be the indexing
function: for all $x\in A_i$, $p(x)=i$.
The fibre is the inverse image, $$p^-1(\{i\}) = \{x|p(x)=i\}=A_i.$$
}
\card{The category ${\bf Bn}(i)$}{The bundle of stalks over a base/indexing space $I$.
objects: pairs $(A, f)$, $A$ being any set and $f:A\to I$ the indexing fn.
arrows: given objects $(A, f)$ and $(B,g)$, $k:A\to B$ such that $g\circ k = f$
A renaming of the comma category of functions with codomain $I$.
}
\card[Property]{Terminal element of ${\bf Bn}(I)$}{$id_I: I\to I$}
\end{document}