forked from jasonu/flashcards
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathabstract-algebra.tex
670 lines (594 loc) · 20.8 KB
/
abstract-algebra.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
\documentclass[avery5371,grid]{flashcards}
\cardfrontstyle[\large\slshape]{headings}
\cardbackstyle{empty}
\cardfrontfoot{Abstract Algebra I}
%\usepackage{amsfonts}
\usepackage{amssymb,amsmath}
\begin{document}
\input{tex.macros}
\begin{flashcard}[Copyright \& License]{Copyright \copyright \, 2006 Jason Underdown \\
Some rights reserved.}
\vspace*{\stretch{1}}
These flashcards and the accompanying \LaTeX \, source code are licensed
under a Creative Commons Attribution--NonCommercial--ShareAlike 2.5 License.
For more information, see creativecommons.org. You can contact the author at:
\begin{center}
\begin{small}\tt jasonu [remove-this] at physics dot utah dot edu\end{small}
\end{center}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{set operations}
\vspace*{\stretch{1}}
\begin{eqnarray*}
A \cup B &=& \lbrace x\mid x\in A \;\textrm{or}\; x\in B\rbrace \\
A \cap B &=& \lbrace x\mid x\in A \;\textrm{and}\; x\in B\rbrace \\
A - B &=& \lbrace x\mid x\in A \;\textrm{and}\; x\not\in B\rbrace \\
A + B &=& (A-B) \cup (B-A)\\
\end{eqnarray*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{De Morgan's rules}
\vspace*{\stretch{1}}
For $A$, $B \subseteq S$
\begin{eqnarray*}
(A\cap B)' &=& A' \cup B'\\
(A\cup B)' &=& A' \cap B'
\end{eqnarray*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{surjective or onto mapping}
\vspace*{\stretch{1}}
The mapping $f:S \mapsto T$ is \textit{onto} or \textit{surjective} if every
$t \in T$ is the image under $f$ of some $s \in S$; that is, iff, $\forall \; t \in T, \quad \exists \; s \in S$ such that $t = f(s)$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{injective or one--to--one mapping}
\vspace*{\stretch{1}}
The mapping $f:S \mapsto T$ is \textit{injective} or \textit{one--to--one}
\mbox{(1-1)} if for $s_1 \neq s_2$ in $S$, $f(s_1) \neq f(s_2)$ in $T$.
\medskip
Equivalently:
\begin{equation*}
f\; \mathrm{ injective } \Longleftrightarrow f(s_1) = f(s_2) \Rightarrow s_1 = s_2
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{bijection}
\vspace*{\stretch{1}}
The mapping $f:S \mapsto T$ is said to be a \textit{bijection} if $f$ is both
\mbox{1-1} and onto.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{composition of functions}
\vspace*{\stretch{1}}
Suppose $g: S \mapsto T$ and $f: T \mapsto U$, then the \textit{composition}
or \textit{product}, denoted by $f\circ g$ is the mapping $f\circ g: S \mapsto U$
defined by:
\begin{equation*}
(f\circ g)(s) = f(g(s))
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Lemma]{composition of functions is associative}
\vspace*{\stretch{1}}
If $h: S \mapsto T, g:T \mapsto U$, and $f: U \mapsto V$, then,
\begin{equation*}
f\circ(g\circ h) = (f\circ g)\circ h
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Lemma]{cancellation and composition}
\vspace*{\stretch{1}}
\begin{equation*}
f \circ g = f \,\circ \stackrel{\sim}{g} \; \textrm{and} \; f\;\textrm{is 1--1}
\Rightarrow g = \,\stackrel{\sim}{g}
\end{equation*}
\begin{equation*}
f \circ g = \,\stackrel{\sim}{f} \circ\, g\; \textrm{and $g$ is onto} \;
\Rightarrow f = \,\stackrel{\sim}{f}
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{image and inverse image of a function}
\vspace*{\stretch{1}}
Suppose $f: S\mapsto T$, and $U\subseteq S$, then the \textit{image}
of $U$ under $f$ is
\begin{equation*}
f(U)=\lbrace f(u)\mid u\in U\rbrace
\end{equation*}
\bigskip
If $V\subseteq T$ then the \textit{inverse image} of $V$ under $f$ is
\begin{equation*}
f^{-1}(V) = \lbrace s\in S \mid f(s) \in V\rbrace
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{inverse function}
\vspace*{\stretch{1}}
Suppose $f: S\mapsto T$. An \textit{inverse} to $f$ is a function
$f^{-1}:T\mapsto S$ such that
\begin{eqnarray*}
f\circ f^{-1} &=& i_T\\
f^{-1}\circ f &=& i_S
\end{eqnarray*}
Where $i_T:T\mapsto T$ is defined by $i_T(t) = t$, and is called the
\textit{identity function} on $T$. And similarly for $S$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{$A(S)$}
\vspace*{\stretch{1}}
If $S$ is a nonempty set, then $A(S)$ is the set of all 1--1 mappings of $S$
onto itself.
\medskip
When $S$ has a finite number of elements, say $n$, then $A(S)$ is called the
\textit{symmetric group of degree n} and is often denoted by $S_n$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Lemma]{properties of $A(S)$}
\vspace*{\stretch{1}}
$A(S)$ satisfies the following:
\begin{enumerate}
\item $f,g \in A(S)\Rightarrow f\circ g \in A(S)$
\item $f,g,h \in A(S)\Rightarrow (f\circ g)\circ h = f\circ (g\circ h)$
\item There exists an $i$ such that $f\circ i = i\circ f = f$\
$\forall f \in A(S)$
\item Given $f \in A(S)$, there exists a $g \in A(S)$ such~that
$f\circ g = g\circ f = i$
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{group}
\vspace*{\stretch{1}}
A nonempty set $G$ together with some operator $*$ is said to be a \textit{group} if:
\begin{enumerate}
\item If $a, b \in G$ then $a*b \in G$
\item If $a, b, c \in G$ then $a*(b*c) = (a*b)*c$
\item $G$ has an identity element $e$ such that
\mbox{$a*e=e*a=a \;\; \forall \> a \in G$}
\item $\forall \> a \in G, \;\; \exists \> b \in G $ such that
\mbox{$a*b=b*a=e$}
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{order of a group}
\vspace*{\stretch{1}}
The number of elements in $G$ is called the \textit{order} of $G$ and
is denoted by $\vert G \vert$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{abelian}
\vspace*{\stretch{1}}
A group $G$ is said to be \textit{abelian} if $\quad \forall \; a,b\in G$
\begin{equation*}
a*b=b*a
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Lemma]{properties of groups}
\vspace*{\stretch{1}}
If $G$ is a group then
\begin{enumerate}
\item Its identity element, $e$ is unique.
\item Every $a \in G$ has a unique inverse $a^{-1} \in G$.
\item If $a \in G$, then $(a^{-1})^{-1}=a$.
\item For $a,b \in G$, \mbox{$(ab)^{-1} = b^{-1}a^{-1}$}, where
$ab=a*b$.
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{subgroup}
\vspace*{\stretch{1}}
A nonempty subset, $H$ of a group $G$ is called a \mbox{\textit{subgroup}}
of $G$ if, relative to the operator in $G$, $H$ itself forms a group.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Lemma]{when is a subset a subgroup}
\vspace*{\stretch{1}}
A nonempty subset $A\subset G$ is a subgroup $\Leftrightarrow$ \
$A$ is closed with respect to the operator of $G$ and given $a \in A$ then $a^{-1} \in A$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{cyclic subgroup}
\vspace*{\stretch{1}}
A \textit{cyclic subgroup} of $G$ is generated by a single element $a \in G$ and is denoted by $(a)$.
\begin{equation*}
(a) = \left\lbrace a^i \mid i \; \textrm{any integer} \right\rbrace
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Lemma]{finite subsets and subgroups}
\vspace*{\stretch{1}}
Suppose that $G$ is a group and $H$ a nonempty \textit{finite} subset of $G$
closed under the operation in $G$. Then $H$ is a subgroup of $G$.
\textbf{Corollary} If $G$ is a \textit{finite} group and $H$ a nonempty subset of $G$
closed under the operation of $G$, then $H$ is a subgroup of $G$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Lemma]{subgroups under $\cap$ and $\cup$}
\vspace*{\stretch{1}}
Suppose $H$ and $H'$ are subgroups of $G$, then
\begin{itemize}
\item $H \cap H'$ is a subgroup of $G$
\item $H \cup H'$ is \textbf{not} a subgroup of $G$, as long as neither
$H$ nor $H'$ is contained in the other.
\end{itemize}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{equivalence relation}
\vspace*{\stretch{1}}
A relation $\sim$ on elements of a set $S$ is an \textit{equivalence relation}
if for all $a, b, c \in S$ it satisfies the following criteria:
\begin{enumerate}
\item $a \sim a$ reflexivity
\item $a \sim b \Rightarrow b \sim a$ symmetry
\item $a \sim b$ and $b \sim c \Rightarrow a \sim c$ transitivity
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{equivalence class}
\vspace*{\stretch{1}}
If $\sim$ is an equivalence relation on a set $S$, then the
\textit{equivalence class} of $a$ denoted $[a]$ is defined to be:
\begin{equation*}
[a] = \left\lbrace b \in S \mid b \sim a\right\rbrace
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{equivalence relations partition sets}
\vspace*{\stretch{1}}
If $\sim$ is an equivalence relation on a set $S$, then $\sim$ partitions $S$
into equivalence classes. That is, for any $a, b \in S$ either:
\begin{equation*}
[a] = [b] \quad \textrm{or} \quad [a] \cap [b] = \oslash
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Lagrange's theorem}
\vspace*{\stretch{1}}
If $G$ is a finite group and $H$ is a subgroup of $G$, then the order of $H$ divides the order of $G$. That is,
\begin{equation*}
\left| G \right| = k \left| H \right|
\end{equation*}
for some integer $k$. The converse of Lagrange's theorem is not generally true.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{index of a subgroup}
\vspace*{\stretch{1}}
If $G$ is a finite group, and $H$ a subgroup of $G$, then the
\textit{index} of $H$ in $G$ is the number of distinct right cosets
of $H$ in $G$, and is denoted:
\begin{equation*}
[G : H] = \dfrac{|G|}{|H|} = i_{G}(H)
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{order of an element in a group}
\vspace*{\stretch{1}}
If $a$ is an element of $G$ then the \textit{order} of $a$ denoted by $o(a)$ is the least positive integer $m$ such that $a^m = e$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{finite groups wrap around}
\vspace*{\stretch{1}}
If $G$ is a finite group of order $n$ then $a^n = e$ for all $a \in G$.
\vspace*{\stretch{1}}
\end{flashcard}
\Card{Abelian group}{
AKA a commutative group:
a group whose operation is also commutative: $a\cdot b = b\cdot a$.
}
\Card{Monoid}{
A set with an operation that is closed and associative,
and an identity element where $f(x)=x$.
I.e., a semigroup with an identity.
}
\Card{Ring}{
A set $R$ with two binary operations, annotated $+$ and $\cdot$, where
\items{
\item $\{R, +\}$ is an abelian (commutative) group
\item $\{R, \cdot\}$ is a monoid
\item The distributive property holds:
$$a \cdot (b + c) = (a \cdot b) + (a \cdot c)\\
(b + c) \cdot a = (b \cdot a) + (c \cdot a) $$
}
}
\begin{flashcard}[Definition]{homomorphism}
\vspace*{\stretch{1}}
If $G$ and $G'$ are two groups, then the mapping
\begin{equation*}
f: G\rightarrow G'
\end{equation*}
is a \textit{homomorphism} if
\begin{equation*}
f(ab) = f(a)f(b) \qquad \forall \; a,b \in G
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{monomorphism, isomorphism, automorphism}
\vspace*{\stretch{1}}
\begin{small}
Suppose the mapping $f: G\rightarrow G'$ is a homomorphism, then:
\begin{itemize}
\item If $f$ is 1--1 (injective) it is called a \textit{monomorphism}.
\item If $f$ is 1--1 and onto (injective and surjective), then it is called an \mbox{\textit{isomorphism}}.
\item If $f$ is an isomorphism that maps $G$ onto itself then it is called
an \textit{automorphism}.
\item If an isomorphism exists between two groups then they are said to be
\textit{isomorphic} and denoted $G\simeq G'$.
\end{itemize}
\end{small}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{composition of homomorphisms}
\vspace*{\stretch{1}}
Suppose $f : G \mapsto G'$ and $h : G' \mapsto G''$ are homomorphisms,
then the composition of $h$ with $f$, $h\circ f$ is also a homomorphism.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{kernel}
\vspace*{\stretch{1}}
If $f$ is a homomorphism from $G$ to $G'$ (which has identity $e'$) then the \textit{kernel}
of $f$ is
\begin{equation*}
\textrm{Ker}f \equiv \lbrace a \in G \mid f(a)=e' \rbrace
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{kernel related subgroups}
\vspace*{\stretch{1}}
If $f$ is a homomorphism of $G$ into $G'$, then
\begin{enumerate}
\item $\textrm{Ker} f$ is a subgroup of $G$.
\item If $a \in G$ then $a^{-1}(\textrm{Ker} f) a \subset \textrm{Ker} f$.
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{normal subgroup}
\vspace*{\stretch{1}}
A subgroup $N$ of $G$ is said to be a \textit{normal subgroup}
of $G$ if $a^{-1}Na \subset N$ for each $a \in G$.
\medskip
\\
$N$ normal to $G$ is denoted $N \lhd G$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{normal subgroups and their cosets}
\vspace*{\stretch{1}}
$N \lhd G$ iff every left coset of $N$ in $G$ is also a right
coset of $N$ in $G$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition/Theorem]{factor group}
\vspace*{\stretch{1}}
If $N \lhd G$, then we define the \textit{factor group}
of $G$ by $N$ denoted $G/N$ to be:
\begin{equation*}
G/N = \lbrace Na \mid a \in G \rbrace =
\lbrace [a] \mid a \in G \rbrace
\end{equation*}
\medskip
$G/N$ is a group relative to the operation
\begin{equation*}
(Na)(Nb) = Nab
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{normal subgroups are the kernel of a homomorphism}
\vspace*{\stretch{1}}
If $N \lhd G$, then there is a homomorphism $\psi : G \mapsto G/N$
such that $\textrm{Ker} \psi = N$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{order of a factor group}
\vspace*{\stretch{1}}
If $G$ is a finite group and $N \lhd G$, then
\begin{equation*}
\left| G/N \right| = \frac{\left| G \right|}{\left| N \right|}
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Cauchy's theorem}
\vspace*{\stretch{1}}
If $p$ is a prime that divides $\left| G \right|$,
then $G$ has an element of order $p$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{first homomorphism theorem}
\vspace*{\stretch{1}}
If $\varphi : G \mapsto G'$ is an onto homomorphism with kernel $K$ then,
\begin{equation*}
G/K \simeq G'
\end{equation*}
with isomorphism $\psi : G/K \mapsto G'$ defined by
\begin{equation*}
\psi (Ka) = \varphi(a)
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{correspondence theorem}
\vspace*{\stretch{1}}
Let $\varphi : G \mapsto G'$ be a homomorphism which maps $G$
onto $G'$ with kernel $K$. If $H'$ is a subgroup of $G'$, and if
$H' = \lbrace a \in G \mid \varphi (a) \in H' \rbrace$ then
\begin{itemize}
\item $H$ is a subgroup of $G$
\item $K \subset H$
\item $H/K \simeq H'$
\end{itemize}
Also, if $H' \lhd G'$ then $H \lhd G$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{second isomorphism theorem}
\vspace*{\stretch{1}}
Let $H$ be a subgroup of $G$ and $N \lhd G$, then
\begin{enumerate}
\item $HN = \lbrace hn \mid h\in H, n\in N \rbrace$ is a subgroup of $G$
\item $H\cap N \lhd H$
\item $H/(H\cap N) \simeq (HN)/N$
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{third isomorphism theorem}
\vspace*{\stretch{1}}
If $\varphi : G \mapsto G'$ is an onto homomorphism with kernel $K$ and
if $N' \lhd G'$ with
$N = \lbrace a \in G \mid \varphi (a) \in N' \rbrace$ then
\begin{equation*}
G/N \simeq G'/N'
\end{equation*}
\begin{center}
or equivalently
\end{center}
\begin{equation*}
G/N \simeq \frac{G/K}{N/K}
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{groups of order $pq$}
\vspace*{\stretch{1}}
If $G$ is a group of order $pq$ ($p$ and $q$ primes) where
$p > q$ and $q \not{\mid} \; p-1$ then $G$ must be cyclic.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{external direct product}
\vspace*{\stretch{1}}
Suppose $G_{1},\ldots,G_{n}$ is a collection of groups. The
\textit{external direct product} of these $n$ groups is the set
of all $n$--tuples for which the $i$th component is an element of
$G_{i}$.
\begin{equation*}
G_{1}\times G_{2}\times \ldots\times G_{n} =
\left\lbrace \left( g_{1},g_{2},\ldots,g_{n}\right)
\mid g_{i} \in G_{i}\right\rbrace
\end{equation*}
The product is defined component--wise.
\begin{equation*}
\left(a_{1},a_{2},\ldots,a_{n} \right)
\left(b_{1},b_{2},\ldots,b_{n} \right) =
\left( a_{1}b_{1},a_{2}b_{2},\ldots,a_{n}b_{n} \right)
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{internal direct product}
\vspace*{\stretch{1}}
A group $G$ is said to be the \textit{internal direct product}
of its normal subgroups $N_{1},N_{2},\ldots,N_{n}$ if every element of
$G$ has a unique representation, that is, if $a \in G$ then:
\begin{equation*}
a = a_{1},a_{2},\ldots,a_{n} \text{ where each } a_{i} \in N_{i}
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Lemma]{intersection of normal subgroups when the group
is an internal direct product}
\vspace*{\stretch{1}}
If $G$ is the internal direct product of its normal subgroups
$N_{1},N_{2},\ldots,N_{n}$, then for $i \neq j, N_{i} \cap N_{j} =
\left\lbrace e \right\rbrace $.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{isomorphism between an external direct product
and an internal direct product}
\vspace*{\stretch{1}}
Let $G$ be a group with normal subgroups $N_{1},N_{2},\ldots,N_{n}$, then the
mapping:
\begin{equation*}
\psi : N_{1} \times N_{2} \times \cdots \times N_{n} \mapsto G
\end{equation*}
defined by
\begin{equation*}
\psi((a_{1},a_{2},\ldots,a_{n})) = a_{1}a_{2}\cdots a_{n}
\end{equation*}
is an isomorphism iff $G$ is the internal direct product of
$N_{1},N_{2},\ldots,N_{n}$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{fundamental theorem on finite abelian groups}
\vspace*{\stretch{1}}
A finite abelian group is the direct product of cyclic groups.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{centralizer of an element}
\vspace*{\stretch{1}}
If $G$ is a group and $a \in G$, then the \textit{centralizer} of $a$ in $G$ is the
set of all elements in $G$ that commute with $a$.
\begin{equation*}
C(a) = \left\lbrace g \in G \mid ga = ag \right\rbrace
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Lemma]{the centralizer forms a subgroup}
\vspace*{\stretch{1}}
If $a \in G$, then $C(a)$ is a subgroup of $G$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{number of distinct conjugates of an element}
\vspace*{\stretch{1}}
Let $G$ be a finite group and $a \in G$, then the number of distinct
conjugates of $a$ in $G$ is $[G : C(a)]$ (the index of $C(a)$ in $G$).
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{the class equation}
\vspace*{\stretch{1}}
\begin{equation*}
|G| = |Z(G)| + \sum_{a \not{\in} Z(G)}[G : C(a)]
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{groups of order $p^{n}$}
\vspace*{\stretch{1}}
If $G$ is a group of order $p^{n}$, ($p$ prime) then $Z(G)$ is
non--trivial, i.e. there exists at least one element other than
the identity that commutes with all other elements of $G$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{groups of order $p^{2}$}
\vspace*{\stretch{1}}
If $G$ is a group of order $p^{2}$ ($p$ prime), then $G$ is abelian.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{groups of order $p^{n}$ contain a normal
subgroup}
\vspace*{\stretch{1}}
If $G$ is a group of order $p^{n}$ ($p$ prime), then $G$ contains
a normal subgroup of order $p^{n-1}$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{$p$--Sylow group}
\vspace*{\stretch{1}}
If $G$ is a group of order $p^{n}m$ where $p$ is prime and
$p \not{\mid} \: m$, then $G$ is a $p$--Sylow group.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Sylow's theorem (part 1)}
\vspace*{\stretch{1}}
If $G$ is a $p$--Sylow group ($|G| = p^{n}m$),
then $G$ has a subgroup of order $p^{n}$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Sylow's theorem (part 2)}
\vspace*{\stretch{1}}
If $G$ is a $p$--Sylow group ($|G| = p^{n}m$), then any
two subgroups of the same order are conjugate. For example,
if $P$ and $Q$ are subgroups of $G$ where $|P|=|Q|=p^{n}$ then
\begin{equation*}
P = x^{-1}Qx \quad \text{ for some } x \in G
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Sylow's theorem (part 3)}
\vspace*{\stretch{1}}
If $G$ is a $p$--Sylow group ($|G| = p^{n}m$),
then the number of subgroups of order $p^{n}$ in $G$ is
of the form $1 + kp$ and divides $|G|$.
\vspace*{\stretch{1}}
\end{flashcard}
\Card{Poset}{
Partially ordered set: a set $S$ and relation $\leq$ where
\items{
\item $a \leq a$ (reflexive)
\item $a \leq b$ and $b \leq a \Rightarrow a=b$ (antisymmetry)
\item $a \leq b$ and $b \leq c \Rightarrow a\leq c$ (transitivity)
} for all $a, b, c \in S$.
A preorder with the addition of the antisymmetry condition.
}
\end{document}