forked from jasonu/flashcards
-
Notifications
You must be signed in to change notification settings - Fork 1
/
analysis-theorems.tex
1788 lines (1634 loc) · 52.8 KB
/
analysis-theorems.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[avery5371,grid]{flashcards}
\cardfrontstyle[\large\slshape]{headings}
\cardbackstyle{empty}
\cardfrontfoot{Real Analysis I}
\usepackage{oldgerm}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{mathrsfs}
\usepackage{datetime}
\newtheorem{lemma}{Lemma}
\newtheorem{corollary}{Corollary}
\newtheorem{theorem}{Theorem}
\newtheorem{axiom}{Axiom}
\newcommand{\bb}[1]{\mathbb{#1}}
\newcommand{\lra}{\longrightarrow}
\newcommand{\Lra}{\Longrightarrow}
\newcommand{\ra}{\rightarrow}
\newcommand{\surj}{\twoheadrightarrow}
\newcommand{\Z}{\bb{Z}}
\newcommand{\Q}{\bb{Q}}
\newcommand{\R}{\bb{R}}
\newcommand{\C}{\bb{C}}
\newcommand{\N}{\bb{N}}
\newcommand{\m}{\bb{m}}
\newcommand{\cl}{\mbox{cl }}
\newcommand{\interior}{\mbox{int }}
\begin{document}
\begin{flashcard}[Copyright \& License]{Copyright \copyright \,
2007 Erin Chamberlain \\Some rights reserved.}
\vspace*{\stretch{1}}
These flashcards and the accompanying \LaTeX \, source code are licensed
under a Creative Commons Attribution--NonCommercial--ShareAlike 3.0
License. For more information, see creativecommons.org.
\medskip
\begin{center}
File last updated on \today, \\
at \currenttime
\end{center}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm01}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm01}
Let $f$ be a continuous function. If $\int _0 ^1 f(x) \, dx \not= 0$,
then there exists a point $x$ in the interval $[0,1]$ such that
$f(x) \not= 0$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm02}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm02}
Let $x$ be a real number. If $x > 0$, then $\frac 1x > 0$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm03}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm03}
Let $x$ be a real number. If $x > 0$, then $\frac 1x > 0$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm04}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm04}
Let $A$ be a set. Then $\emptyset \subseteq A$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm05}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm05}
Let $A$ and $B$ be subsets of a universal set $U$. Then
$A \cap (U \smallsetminus B) = A \smallsetminus B$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm06}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm06}
\begin{small}
Let $A, B$, and $C$ be subsets of a universal set $U$. Then the
following statements are true.
\begin{enumerate}
\item $A \cup (U \smallsetminus A) = U$.
\item $A \cap (U \smallsetminus A) = \emptyset $.
\item $U \smallsetminus (U \smallsetminus A) = A$.
\item $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
\item $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
\item $A \smallsetminus (B \cup C) = (A \smallsetminus B) \cap
(A \smallsetminus C)$.
\item $A \smallsetminus (B \cap C) = (A \smallsetminus B) \cup
(A \smallsetminus C)$.
\end{enumerate}
\end{small}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm07}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm07}
If $A$ and $B$ are subsets of a set $U$ and $A^c$ and $B^c$ are their
complements in $U$, then
\begin{enumerate}
\item $(A \cup B)^c = A^c \cap B^c$.
\item $(A \cap B)^c = A^c \cup B^c$.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm08}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm08}
$(a,b) = (c,d)$ iff $a=c$ and $b=d$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm09}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm09}
Let $R$ be an equivalence relation on a set $S$. Then $\{ E_x : x \in S\}$ is a partition of $S$. The relation ``belongs to the same piece as'' is the same as $R$. Conversely, if $\cal{T}$ is a partition of $S$, let $R$ be defined by $xRy$ iff $x$ and $y$ are in the same piece of the partition. Then $R$ is an equivalence relation and the corresponding partition into equivalence classes is the same as $\cal{T}$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm10} (part 1)}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm10}
\begin{small}
Suppose that $f: A \to B$. Let $C, C_1$ and $C_2$ be subsets of $A$ and
let $D, D_1$ and $D_2$ be subsets of $B$. Then the following hold:
\begin{enumerate}
\item $C \subseteq f^{-1}[f(C)]$.
\item $f[f^{-1}(D)] \subseteq D$.
\item $f(C_1 \cap C_2 ) \subseteq f(C_1) \cap f(C_2)$.
\item $f(C_1 \cup C_2) = f(C_1) \cup f(C_2)$.
\item $f(C_1) \smallsetminus f(C_2) \subseteq f(C_1 \smallsetminus C_2)$
if $C_2 \subseteq C_1$.
\end{enumerate}
\end{small}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm10} (part 2)}
\vspace*{\stretch{1}}
\textbf{Theorem \ref{thm10}.}
\begin{small}
\textit{Suppose that $f: A \to B$. Let $C, C_1$ and $C_2$ be subsets of $A$ and let $D, D_1$ and $D_2$ be subsets of $B$. Then the following hold:
\begin{enumerate}
\item[6.] $f^{-1}(D_1 \cap D_2) = f^{-1}(D_1) \cap f^{-1}(D_2)$.
\item[7.] $f^{-1}(D_1 \cup D_2) = f^{-1}(D_1) \cup f^{-1}(D_2)$.
\item[8.] $f^{-1}(B \smallsetminus D) = A \smallsetminus f^{-1}(D)$.
\item[9.] $f^{-1}(D_1 \smallsetminus D_2) = f^{-1}(D_1) \smallsetminus f^{-1}(D_2)$ if $D_2 \subseteq D_1$.
\end{enumerate}}
\end{small}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm11}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm11}
Suppose that $f: A \to B$. Let $C, C_1$ and $C_2$ be subsets of $A$ and
let $D$ be a subset of $B$. Then the following hold:
\begin{enumerate}
\item If $f$ is injective, then $f^{-1}[f(C)]=C$.
\item If $f$ is surjective, then $f[f^{-1}(D)]=D$.
\item If $f$ is injective, then $f(C_1 \cap C_2) = f(C_1) \cap f(C_2)$.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm12}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm12}
Let $f: A \to B$ and $g: B \to C$. Then
\begin{enumerate}
\item If $f$ and $g$ are surjective, then $g \circ f$ is surjective.
\item If $f$ and $g$ are injective, then $g \circ f$ is injective.
\item If $f$ and $g$ are bijective, then $g \circ f$ is bijective.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm13}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm13}
Let $f: A \to B$ be bijective. Then
\begin{enumerate}
\item $f^{-1}: B \to A$ is bijective.
\item $f^{-1} \circ f = i_A$ and $f \circ f^{-1} = i_B$.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm14}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm14}
Let $f: A \to B$ and $g: B \to C$ be bijective. The the composition
$g \circ f : A \to C$ is bijective and
$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm15}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm15}
Let $S$ be a countable set and let $T \subseteq S$. Then $T$ is countable.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm16}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm16}
Let $S$ be a nonempty set. The following three conditions are
equivalent:
\begin{enumerate}
\item $S$ is countable.
\item There exists an injection $f: S \to \N$.
\item There exists a surjection $f: \N \to S$.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm17}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm17}
The set $\R$ of real numbers is uncountable.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm18}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm18}
Let $S, T$ and $U$ be sets.
\begin{enumerate}
\item If $S \subseteq T$, then $|S| \leq |T|$.
\item $|S| \leq |S|$.
\item If $|S|\leq |T|$ and $|T| \leq |U|$, then $|S| \leq |U|$.
\item If $m, n \in \N$ and $m \leq n$, then $|\{ 1, 2, \ldots , m \} |
\leq |\{ 1, 2, \ldots , n\} |$.
\item If $S$ is finite, then $S < \aleph _0$.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm19}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm19}
For any set $S$, we have $|S| < |\cal{P}(S)|$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm20} \\ Principle of
Mathematical Induction}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm20}
(Principle of Mathematical Induction) Let $P(n)$ be a statement that is
either true or false for each $n \in \N$. Then $P(n)$ is true for all
$n \in \N$ provided that
\begin{enumerate}
\item $P(1)$ is true, and
\item for each $k \in \N$, if $P(k)$ is true, then $P(k+1)$ is true.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm21}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm21}
$1 + 2 + 3 + \cdots + n = \frac 12 n(n+1)$ for every natural number $n$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm22}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm22}
$7^n - 4^n$ is a multiple of 3 for all $n \in \N$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm23} \\ The Binomial Formula}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm23}
(The Binomial Formula) If $x$ and $y$ are real numbers and $n \in \N$,
then $$(x+y)^n = \sum _{k=0}^n \binom{n}{k} x^{n-k}y^k.$$
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm24}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm24}
Let $m \in \N$ and let $P(n)$ be a statement that is either true or
false for each $n \geq m$. Then $P(n)$ is true for all $n \geq m$
provided that
\begin{enumerate}
\item $P(m)$ is true, and
\item for each $k \geq m$, if $P(k)$ is true, then $P(k+1)$ is true.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm25}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm25}
Let $x,y,$ and $z$ be real numbers.
\begin{enumerate}
\item If $x+z = y + z$, then $x=y$.
\item $x\cdot 0 = 0$.
\item $(-1)\cdot x = -x$.
\item $xy = 0$ iff $x=0$ or $y=0$.
\item $x<y$ iff $-y < -x$.
\item If $x<y$ and $z<0$, then $xz > yz$.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm26}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm26}
Let $x,y \in \R$ such that $x \leq y+\epsilon$ for every $\epsilon > 0$.
Then $x \leq y$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm27}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm27}
Let $x, y \in \R$ and let $a \geq 0$. Then
\begin{enumerate}
\item $|x| \geq 0$.
\item $|x| \leq a$ iff $-a \leq x \leq a$.
\item $|xy| = |x|\cdot |y|$.
\item $|x+y| \leq |x| + |y|$. (The triangle inequality)
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm28}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm28}
Let $m,n,p \in \Z$. If $p$ is a prime number and $p$ divides the
product $mn$, then $p$ divides $m$ or $p$ divides $n$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm29}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm29}
Let $p$ be a prime number. Then $\sqrt{p}$ is not a rational number.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm30}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm30}
Every non-empty subset of $\R$ that is bounded below has a greatest
lower bound.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm31}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm31}
Let $A$ be a non-empty subset of $\R$ and $x$ an element of $\R$. Then
\begin{enumerate}
\item $\sup A \leq x$ iff $a \leq x$ for every $a \in A$.
\item $x<\sup A$ iff $x<a$ for some $a \in A$.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm32}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm32}
Let $A$ and $B$ be non-empty subsets of $\R$. Then
\begin{enumerate}
\item $\inf A \leq \sup A$.
\item $\sup (-A) = - \inf A$ and $\inf (-A) = - \sup A$.
\item $\sup (A + B) = \sup (A) + \sup (B)$ and $\inf (A+B) = \inf (A) + \inf (B)$.
\item $\sup (A - B) = \sup (A) - \inf (B)$.
\item If $A \subseteq B$, then $\sup A \leq \sup B$ and $\inf B \leq \inf A$.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm33}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm33}
Suppose that $D$ is a nonempty set and that $f: D \to \R$ and $g : D \to \R$. If for every $x,y \in D$, $f(x) \leq g(y)$, then $f(D)$ is bounded above and $g(D)$ is bounded below. Furthermore, $\sup f(D) \leq \sup g(D)$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm34}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm34}
Let $f$ and $g$ be functions defined on a set containing $A$ as a subset,
and let $c \in \R$ be a positive constant. Then
\begin{enumerate}
\item $\sup _A cf = c \sup _A f$ and $\inf _A cf = c \inf _A f$.
\item $\sup _A (-f) = - \inf _A f$.
\item $\sup _A (f+g) \leq \sup _A f + \sup _A g$ and \\
$\inf _A f + inf _A g \leq \inf _A (f+g)$.
\item $\sup \{ f(x) - f(y) : x,y \in A \} \leq \sup _A f - \inf _A f$.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm35}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm35}
The real number system $\R$ is a complete ordered field.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm36}\\
Archimedean Property of $\R$}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm36}
(Archimedean Property of $\R$) The set $\N$ of natural numbers is
unbounded above in $\R$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm37}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm37}
Each of the following is equivalent to the Archimedean property.
\begin{enumerate}
\item For each $z \in \R$, there exists $n\in \N$ such that $n>z$.
\item For each $x>0$ and for each $y \in \R$, there exists $n \in \N$
such that $nx > y$.
\item For each $x > 0$, there exists $n \in \N$ such that
$0 < \frac{1}{n} < x$.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm38}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm38}
Let $p$ be a prime number. Then there exists a positive real number $x$
such that $x^2=p$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm39}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm39}
(Density of $\Q$ in $\R$) If $x$ and $y$ are real numbers with $x<y$,
then there exists a rational number $r$ such that $x<r<y$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm40}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm40}
If $x$ and $y$ are real numbers with $x<y$, then there exists an
irrational number $w$ such that $x<w<y$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm41}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm41} \quad \\
\begin{enumerate}
\item A set $S$ is open iff $S = \interior S$. Equivalently, $S$ is
open iff every point in $S$ is an interior point of $S$.
\item A set $S$ is closed iff its complement $\R \smallsetminus S$ is
open.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm42}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm42} \quad \\
\begin{enumerate}
\item The union of any collection of open sets is an open set.
\item The intersection of any finite collection of open sets is an open
set.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Corollary]{Corollary \ref{cor01}}
\vspace*{\stretch{1}}
\begin{corollary}
\label{cor01} \quad \\
\begin{enumerate}
\item The intersection of any collection of closed sets is closed.
\item The union of any finite collection of closed sets is closed.
\end{enumerate}
\end{corollary}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm43}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm43}
Let $S$ be a subset of $\R$. Then
\begin{enumerate}
\item $S$ is closed iff $S$ contains all of its accumulation points.
\item $\cl S$ is a closed set.
\item $S$ is closed iff $S = \cl S$.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Lemma]{Lemma \ref{lem01}}
\vspace*{\stretch{1}}
\begin{lemma}
\label{lem01}
If $S$ is a nonempty closed bounded subset of $\R$, then $S$ has a
maximum and a minimum.
\end{lemma}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm44} \\ Heine--Borel Theorem}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm44}
(Heine--Borel) A subset $S$ of $\R$ is compact iff $S$ is closed and
bounded.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm45} \\ Bolzano--Weierstrass
Theorem}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm45}
(Bolzano--Weierstrass) If a bounded subset $S$ of $\R$ contains
infinitely many points, then there exists at least one point in $\R$
that is an accumulation point of $S$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm46}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm46}
Let $\mathscr{F} = \{ K_{\alpha} : \alpha \in \mathscr{A} \}$ be a family
of compact subsets of $\R$. Suppose that the intersection of any finite
subfamily of $\mathscr{F}$ is nonempty. Then
\mbox{$\bigcap \{ K_{\alpha} : \alpha \in \mathscr{A} \} \neq \varnothing$}.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Corollary]{Corollary \ref{cor02}\\
Nested Intervals Theorem}
\vspace*{\stretch{1}}
\begin{corollary}
\label{cor02}
(Nested Intervals Theorem) Let $\mathscr{F} = \{ A_{n} : n \in \N \} $
be a family of closed bounded intervals in $\R$ such that $A_{n+1}
\subseteq A_n$ for all $n \in \N$. Then $\bigcap _{n=1}^{\infty} A_n
\neq \varnothing $.
\end{corollary}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm47}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm47}
Let $(s_n)$ and $(a_n)$ be sequences of real numbers and let $s \in \R$.
If for some $k > 0$ and some $m \in \N$, we have
$$|s_n - s| \leq k|a_n|, \mbox{ for all } n > m,$$
and if $\lim a_n = 0$, then it follows that $\lim s_n = s$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm48}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm48}
Every convergent sequence is bounded.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm49}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm49}
If a sequence converges, its limit is unique.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm50}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm50}
A sequence $(s_n)$ converges to $s$ iff for each $\epsilon > 0$, there
are only finitely many $n$ for which $|s_n - s| \geq \epsilon$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm51}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm51}
Let $(s_n)$ be a sequence of real numbers such that $\lim s_n = 0$, and
let $(t_n)$ be a bounded sequence. Then $\lim s_nt_n = 0$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm52} \\ The Squeeze Principle}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm52}
(The Squeeze Principle) If $(a_n)$, $(b_n)$, and $(c_n)$ are sequences
for which there is a number $K$ such that $b_n \leq a_n \leq c_n
\mbox{ for all } n > K$, and if $b_n \to a$ and $c_n \to a$, then
$a_n \to a$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm53}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm53}
Suppose that $(s_n)$ and $(t_n)$ are convergent sequences with
$\lim s_n = s$ and $\lim t_n = t$. Then
\begin{enumerate}
\item $\lim (s_n + t_n) = s+t$.
\item $\lim (ks_n) = ks$ and $\lim (k+s_n) = k+s$ for any $k\in \R$.
\item $\lim (s_nt_n) = st.$
\item $\lim \left( \frac {s_n}{t_n} \right) = \frac st$, provided that
$t_n \not= 0$ for all $n$ and $t\not= 0$.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm54}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm54}
Suppose that $(s_n)$ and $(t_n)$ are convergent sequences with
$\lim s_n = s$ and $\lim t_n = t$. If $s_n \leq t_n$ for all $n \in
\N$, then $s \leq t$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Corollary]{Corollary \ref{cor03}}
\vspace*{\stretch{1}}
\begin{corollary}
\label{cor03}
If $(t_n)$ converges to $t$ and $t_n \geq 0$ for all $n \in \N$, then
$t \geq 0$.
\end{corollary}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm55}\\
Ratio Test}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm55}
(Ratio Test) Suppose that $(s_n)$ is a sequence of positive terms and
that the limit $L = \lim \left( \frac{s_{n+1}}{s_n} \right)$ exists.
If $L < 1$, then $\lim s_n = 0$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm56}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm56}
Suppose that $(s_n)$ and $(t_n)$ are sequences such that $s_n \leq t_n$
for all $n \in \N$.
\begin{enumerate}
\item If $\lim s_n = + \infty$, then $\lim t_n = + \infty$.
\item If $\lim t_n = - \infty$, then $\lim s_n = - \infty$.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm57}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm57}
Let $(s_n)$ be a sequence of positive numbers. Then $\lim s_n = + \infty$
iff $\lim \left( \frac{1}{s_n} \right) = 0$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm58} \\ Monotone Convergence
Theorem}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm58}
(Monotone Convergence Theorem) A monotone sequence is convergent iff it
is bounded.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm59}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm59} \quad \\
\begin{enumerate}
\item If $(s_n)$ is an unbounded increasing sequence, then $\lim s_n = + \infty$.
\item If $(s_n)$ is an unbounded decreasing sequence, then $\lim s_n = - \infty$.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Lemma]{Lemma \ref{lem02}}
\vspace*{\stretch{1}}
\begin{lemma}
\label{lem02}
Every convergent sequence is a Cauchy sequence.
\end{lemma}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Lemma]{Lemma \ref{lem03}}
\vspace*{\stretch{1}}
\begin{lemma}
\label{lem03}
Every Cauchy sequence is bounded.
\end{lemma}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm60} \\ Cauchy Convergence
Criterion}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm60}
(Cauchy Convergence Criterion) A sequence of real numbers is convergent
iff it is a Cauchy sequence.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm61}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm61}
If a sequence $(s_n)$ converges to a real number $s$, then every
subsequence of $(s_n)$ also converges to $s$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm62} \\ Bolzano--Weierstrass
Theorem For Sequences}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm62}
(Bolzano--Weierstrass Theorem For Sequences) Every bounded sequence has
a convergent subsequence.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm63}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm63}
Every unbounded sequence contains a monotone subsequence that has either
$+ \infty$ or $- \infty$ as a limit.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm64}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm64}
Let $(s_n)$ be a sequence and suppose that $m = \lim s_n$ is a real
number. Then the following properties hold:
\begin{enumerate}
\item For every $\epsilon > 0$ there exists $N$ such that $n> N$ implies
that $s_n < m+\epsilon$.
\item For every $\epsilon >0$ and for every $i \in \N$, there exists an
integer $k > i$ such that $s_k > m - \epsilon$.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm65}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm65}
Let $f: D \to \R$ and let $c$ be an accumulation point of $D$. Then
$\lim _{x \to c} f(x) = L$ iff for each neighborhood $V$ of $L$ there
exists a deleted neighborhood $U$ of $c$ such that $f(U \cap D)
\subseteq V$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm66}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm66}
Let $f: D \to \R$ and let $c$ be an accumulation point of $D$. Then
$\lim _{x \to c} f(x) = L$ iff for every sequence $(s_n)$ in $D$ that
converges to $c$ with $s_n \not= c$ for all $n$, the sequence $(f(s_n))$
converges to $L$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Corollary]{Corollary \ref{cor04}}
\vspace*{\stretch{1}}
\begin{corollary}
\label{cor04}
If $f: D \to \R$ and if $c$ is an accumulation point of $D$, then $f$
can have only one limit at $c$.
\end{corollary}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm67}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm67}
Let $f: D \to \R$ and let $c$ be an accumulation point of $D$. Then the
following are equivalent:
\begin{enumerate}
\item[(a)] $f$ does not have a limit at $c$.
\item[(b)] There exists a sequence $(s_n)$ in $D$ with each
$s_n \not= c$ such that $(s_n)$ converges to $c$, but $(f(s_n))$ is not
convergent in $\R$.
\end{enumerate}
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm68}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm68}
Let $f: D \to \R$ and $g: D \to \R$, and let $c$ be an accumulation
point of $D$. If $\lim _{x \to c} f(x) = L$, $\lim _{x \to c} g(x) = M$,
and $k \in \R$, then $\lim _{x \to c} (f+g)(x) = L + M, \lim _{x \to c}
(fg)(x) = LM$, and $\lim _{x \to c} (kf)(x) = kL$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm69}}
\vspace*{\stretch{1}}
\begin{small}
\begin{theorem}
\label{thm69}
Let $f : D \to \R$ and let $c \in D$. Then the following three
conditions are equivalent:
\begin{enumerate}
\item[(a)] $f$ is continuous at $c$.
\item[(b)] If $(x_n)$ is any sequence in $D$ such that $(x_n)$
converges to $c$, then $\lim f(x_n) = f(c)$.
\item[(c)] For every neighborhood $V$ of $f(c)$ there exists a
neighborhood $U$ of $c$ such that $f(U \cap D) \subseteq V$.
\end{enumerate}
Furthermore, if $c$ is an accumulation point of $D$, then the above are
all equivalent to
\begin{enumerate}
\item[(d)] $f$ has a limit at $c$ and $\lim _{x \to c} f(x) = f(c)$.
\end{enumerate}
\end{theorem}
\end{small}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm70}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm70}
Let $f:D \to \R$ and let $c \in D$. Then $f$ is discontinuous at $c$
iff there exists a sequence $(x_n)$ in $D$ such that $(x_n)$ converges
to $c$ but the sequence $(f(x_n))$ does not converge to $f(c)$.
\end{theorem}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{Theorem \ref{thm71}}
\vspace*{\stretch{1}}
\begin{theorem}
\label{thm71}
Let $f$ and $g$ be functions from $D$ to $\R$, and let $c \in D$.