forked from jasonu/flashcards
-
Notifications
You must be signed in to change notification settings - Fork 1
/
calculus-1.tex
552 lines (502 loc) · 16.5 KB
/
calculus-1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
\documentclass[avery5371,grid]{flashcards}
\cardfrontstyle[\large\slshape]{headings}
\cardbackstyle{empty}
\cardfrontfoot{Calculus I}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{datetime}
\begin{document}
\begin{flashcard}[Copyright \& License]{Copyright \copyright \, 2007 Jason Underdown \\
Some rights reserved.}
\vspace*{\stretch{1}}
These flashcards and the accompanying \LaTeX \, source code are licensed
under a Creative Commons Attribution--NonCommercial--ShareAlike 2.5 License.
For more information, see creativecommons.org. You can contact the author at:
\begin{center}
\begin{small}\tt jasonu at physics utah edu\end{small}
\medskip
File last updated on \today, \\
at \currenttime
\end{center}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Formula]{quadratic formula}
\vspace*{\stretch{1}}
The solutions or roots of the quadratic equation \\
$ax^2 + bx + c = 0$ are given by
\begin{equation*}
x = \dfrac{-b\pm \sqrt{b^2-4ac}}{2a}
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{absolute value}
\vspace*{\stretch{1}}
\begin{equation*}
|x| = \left\{ \begin{array}{ll}
x & \: x \geq 0 \\
-x & \: x < 0
\end{array} \right.
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{properties of absolute values}
\vspace*{\stretch{1}}
\begin{enumerate}
\item $|ab| = |a||b|$
\item $\left| \dfrac{a}{b} \right| = \dfrac{|a|}{|b|}$
\item $|a+b| \leq |a| + |b|$
\item $|a-b| \geq ||a| - |b||$
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{equation of a line in various forms}
\vspace*{\stretch{1}}
\begin{tabular}{cc}
Form & Equation\\ \hline
\\
point--slope & $y - y_{1} = m(x - x_{1})$\\
\\
slope--intercept & $y = mx + b$\\
\\
two point & $y - y_{1} = \dfrac{y_{2} - y_{1}}{x_{2}- x_{1}}(x - x_{1})$\\
\\
standard & $Ax + By + C = 0$\\
\end{tabular}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{equation of a circle}
\vspace*{\stretch{1}}
The equation of a circle centered at $(h,k)$
with radius $r$ is:
\begin{equation*}
(x-h)^{2} + (y-k)^{2} = r^{2}
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{$\sin, \cos, \tan$}
\vspace*{\stretch{1}}
\setlength{\unitlength}{0.5cm}
\begin{picture}(6,3)
\thicklines
% draw 3-4-5 triangle
\put(2,0){\line(1,0){4}}
\put(6,0){\line(0,1){3}}
\put(2,0){\line(4,3){4}}
% draw box in lower right-hand corner
\put(5.6,0){\line(0,1){0.4}}
\put(6,0.4){\line(-1,0){0.4}}
% label sides of triangle
\put(6.2,1.3){opp}
\put(3.7,-0.7){adj}
\put(3.2,1.9){hyp}
\put(2.8,.1){$\theta$}
% explanatory text
\put(9,3.5){$\sin \theta = \dfrac{\text{opp}}{\text{hyp}}$}
\put(9,1.5){$\cos \theta = \dfrac{\text{adj}}{\text{hyp}}$}
\put(9,-0.5){$\tan \theta = \dfrac{\text{opp}}{\text{adj}}$}
\end{picture}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{$\sec, \csc, \tan, \cot$}
\vspace*{\stretch{1}}
\begin{center}
\begin{tabular}{cc}
$\sec \theta = \dfrac{1}{\cos \theta}$ &
$\csc \theta = \dfrac{1}{\sin \theta}$\\
& \\
& \\
$\tan \theta = \dfrac{\sin \theta}{\cos \theta}$ &
$\cot \theta = \dfrac{\cos \theta}{\sin \theta}$\\
\end{tabular}
\end{center}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{midpoint formula}
\vspace*{\stretch{1}}
If $P(x_{1}, y_{1})$ and $Q(x_{2}, y_{2})$ are two points, then
the midpoint of the line segment that joins these two points
is given by:
\begin{equation*}
\left( \dfrac{x_{1}+x_{2}}{2}, \dfrac{y_{1}+y_{2}}{2}\right)
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{function}
\vspace*{\stretch{1}}
A \textbf{function} is a mapping that associates with each object $x$ in one
set, which we call the \textbf{domain}, a single value $f(x)$ from a second set
which we call the \textbf{range}.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{even and odd functions}
\vspace*{\stretch{1}}
\begin{tabular}{ccc}
\textbf{even} & $f(-x) = f(x) \quad \text{ for all } x$ & e.g. $x^{2}, \cos(x)$\\
\\
\textbf{odd} & $f(-x) = -f(x) \quad \text{ for all } x$ & e.g. $x, \sin(x)$\\
\end{tabular}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{limit}
\vspace*{\stretch{1}}
If a function $f(x)$ is defined on an open interval containing $c$, except
possibly at $c$, then the \\
\textbf{limit of $f(x)$ as $x$ approaches $c$ equals $L$}
is denoted
\begin{equation*}
\lim_{x\rightarrow c} f(x) = L
\end{equation*}
The above equality holds if and only if for any
$\varepsilon > 0$ there exists a $\delta > 0$ such that
\begin{equation*}
0<|x-c|<\delta \Rightarrow |f(x) - L|<\varepsilon
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{one--sided limit}
\vspace*{\stretch{1}}
\textbf{right--handed limit}
\begin{equation*}
\lim_{x\rightarrow c^{+}} f(x) = L
\end{equation*}
\begin{center}
iff for any $\varepsilon>0$ there exists a $\delta$ such that\\
\end{center}
\begin{equation*}
0<x-c<\delta \Rightarrow |f(x)-L|<\varepsilon\\
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{limit exists iff both the right--handed
and left--handed limits exist and are equal}
\vspace*{\stretch{1}}
%\begin{equation*}
\begin{equation*}
\lim_{x\rightarrow c}f(x) = L \Leftrightarrow
\lim_{x\rightarrow c^{+}} f(x) = \lim_{x\rightarrow c^{-}} f(x) = L
\end{equation*}
%\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{main limit theorem (part 1)}
\vspace*{\stretch{1}}
\begin{small}
Let $k$ be a constant, and $f, g$ be
functions that have limits at $c$.
\begin{enumerate}
\item $\lim_{x\rightarrow c}k = k$
\item $\lim_{x\rightarrow c}x = c$
\item $\lim_{x\rightarrow c}kf(x) = k\lim_{x\rightarrow c}f(x)$
\item $\lim_{x\rightarrow c}[f(x)+g(x)] =
\lim_{x\rightarrow c}f(x) + \lim_{x\rightarrow c}g(x)$
\item $\lim_{x\rightarrow c}[f(x)-g(x)] =
\lim_{x\rightarrow c}f(x) - \lim_{x\rightarrow c}g(x)$
\item $\lim_{x\rightarrow c}[f(x)\cdot g(x)] =
\lim_{x\rightarrow c}f(x) \cdot \lim_{x\rightarrow c}g(x)$
\end{enumerate}
\end{small}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{main limit theorem (part 2)}
\vspace*{\stretch{1}}
Let $f, g$ be functions that have limits at $c$, and let $n$
be a positive integer.
\begin{enumerate}
\item[7.] $\lim_{x\rightarrow c}\dfrac{f(x)}{g(x)} =
\dfrac{\lim_{x\rightarrow c}f(x)}{\lim_{x\rightarrow c}g(x)}$
if $\lim_{x\rightarrow c}g(x) \neq 0$
\item[8.] $\lim_{x\rightarrow c}[f(x)]^{n} =
[\lim_{x\rightarrow c}f(x)]^{n}$
\item[9.] $\lim_{x\rightarrow c} \root n\of{f(x)} =
\root n\of{\lim_{x\rightarrow c}f(x)}$ provided that
$\lim_{x\rightarrow c}f(x) > 0 $ when $n$ is even.
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{squeeze theorem}
\vspace*{\stretch{1}}
Suppose $f$, $g$ and $h$ are functions which satisfy
the inequality $f(x) \leq g(x) \leq h(x)$ for all $x$
near $c$, (except possibly at $c$). Then
\begin{equation*}
\lim_{x \rightarrow c} f(x) = \lim_{x \rightarrow c} h(x) = L
\Rightarrow \lim_{x \rightarrow c} g(x) = L
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{two special trigonometric limits}
\vspace*{\stretch{1}}
\begin{equation*}
\lim_{x \rightarrow 0} \dfrac{\sin x}{x} = 1
\end{equation*}
\bigskip
\begin{equation*}
\lim_{x \rightarrow 0} \dfrac{1-\cos x}{x} = 0
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{point-wise continuity}
\vspace*{\stretch{1}}
Let $f$ be defined on an open interval containing $c$, then
we say that f is \textbf{point-wise continuous} at $c$ if
\begin{equation*}
\lim_{x \rightarrow c} f(x) = f(c)
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{composition limit theorem}
\vspace*{\stretch{1}}
If $\lim_{x \rightarrow c} g(x) = L$ and $f$ is continuous at $L$, then
\begin{equation*}
\lim_{x \rightarrow c} f(g(x)) = f(\lim_{x \rightarrow c} g(x)) = f(L)
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{continuity on an interval}
\vspace*{\stretch{1}}
A function $f$ is said to be \textbf{continuous on an open inteval}
iff $f$ is continuous at every point of the open interval.
A function $f$ is said to be \textbf{continuous on a closed interval}
$[a,b]$ iff
\begin{enumerate}
\item $f$ is continuous on $(a,b)$ and
\item $\lim_{x \rightarrow a^{+}} f(x) = f(a)$ and
\item $\lim_{x \rightarrow b^{-}} f(x) = f(b)$
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{derivative}
\vspace*{\stretch{1}}
The \textbf{derivative} of a function $f$ is another function
$f'$ (read ``f prime'') whose value at $x$ is
\begin{equation*}
f'(x) = \lim_{h \rightarrow 0} \dfrac{f(x+h) - f(x)}{h}
\end{equation*}
provided the limit exists and is not $\infty$ or $-\infty$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{equivalent form for the derivative}
\vspace*{\stretch{1}}
\begin{equation*}
f'(c) = \lim_{x \rightarrow c} \dfrac{f(x) - f(c)}{x - c}
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{differentiability and continuity}
\vspace*{\stretch{1}}
If the function $f$ is differentiable at $c$, then $f$ is continuous at $c$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{constant and power rules}
\vspace*{\stretch{1}}
\begin{align*}
f(x) &= k & f'(x) &=0 \\
\\
f(x) &= x & f'(x) &=1 \\
\\
f(x) &= x^{n} & f'(x) &=nx^{n-1} \\
\end{align*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{differentiation rules}
\vspace*{\stretch{1}}
Let $f$ and $g$ be functions of $x$ and $k$ a constant.
\begin{enumerate}
\item \textbf{scalar product rule} $(kf)' = kf'$
\item \textbf{sum rule} $(f+g)' = f' + g'$
\item \textbf{difference rule} $(f-g)' = f' - g'$
\item \textbf{product rule} $(fg)' = f'g + fg'$
\item \textbf{quotient rule} $\left( \dfrac{f}{g} \right)' = \dfrac{f'g - g'f}{g^2}$
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{derivatives of trig functions}
\vspace*{\stretch{1}}
\begin{align*}
(\sin x)' & = \cos x \\
(\cos x)' & = -\sin x \\
(\tan x)' & = \sec^2 x \\
(\cot x)' & = -\csc^2 x \\
(\sec x)' & = \sec x \tan x \\
(\csc x)' & = -\csc x \cot x \\
\end{align*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{chain rule}
\vspace*{\stretch{1}}
Let $u=g(x)$ and $y=f(u)$. If $g$ is differentiable at $x$, and
$f$ is differentiable at $u=g(x)$, then the composite function
$(f\circ g)(x) = f(g(x))$ is differentiable at $x$ and
\begin{equation*}
(f\circ g)'(x) = f'(g(x)) g'(x)
\end{equation*}
In Leibniz notation
\begin{equation*}
\dfrac{dy}{dx}=\dfrac{dy}{du} \dfrac{du}{dx}
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{generalized power rule}
\vspace*{\stretch{1}}
If $f$ is a differentiable function and $n$ is an integer, then
the power of the function
\begin{equation*}
y = \left[ f(x) \right]^{n}
\end{equation*}
is differentiable and
\begin{equation*}
\dfrac{dy}{dx} = n\left[ f(x) \right]^{n-1}f'(x)
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{notation for higher-order derivatives}
\vspace*{\stretch{1}}
\begin{center}
\begin{footnotesize}
\begin{tabular}{ccccc}
Derivative & $f'(x)$ & $y'$ & $D$ & Leibniz \\ \hline
\\
first & $f'(x)$ & $y'$ & $D_{x}y$ & $\frac{dy}{dx}$\\
\\
second & $f''(x)$ & $y''$ & $D_{x}^{2}y$ & $\frac{d^{2}\! y}{dx^{2}}$\\
\\
third & $f'''(x)$ & $y'''$ & $D_{x}^{3}y$ & $\frac{d^{3}\! y}{dx^{3}}$\\
\\
fourth & $f^{(4)}(x)$ & $y^{(4)}$ & $D_{x}^{4}y$ & $\frac{d^{4}\! y}{dx^{4}}$\\
$\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ & $\vdots$ \\
nth & $f^{(n)}(x)$ & $y^{(n)}$ & $D_{x}^{n}y$ & $\frac{d^{n}\! y}{dx^{n}}$\\
\end{tabular}
\end{footnotesize}
\end{center}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{extreme value theorem}
\vspace*{\stretch{1}}
If the function $f$ is continuous on the closed interval $[a,b]$,
then $f$ has a maximum value and a minimum value on the interval
$[a,b]$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{intermediate value theorem}
\vspace*{\stretch{1}}
If the function $f$ is continuous on the closed interval $[a,b]$
and $v$ is any value between the minimum and maximum of $f$ on
$[a,b]$, then $f$ takes on the value $v$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{critical point\\stationary point\\singular point}
\vspace*{\stretch{1}}
If $f$ is a function defined on an open interval containing the point $c$,
we call $c$ a \textbf{critical point} of $f$ iff either
\begin{itemize}
\item $f'(c) = 0$ or
\item $f'(c)$ does not exist
\end{itemize}
Furthermore when $f'(c)=0$ we call $c$ a \textbf{stationary point} of $f$,
and when $f'(c)$ does not exist we call $c$ a \textbf{singular point}
of $f$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{increasing\\decreasing\\monotonic}
\vspace*{\stretch{1}}
A function $f$ defined on the interval $I$ is
\begin{itemize}
\item \textbf{increasing} on $I \Leftrightarrow$
for every $x_{1},x_{2}\in I$\\
$x_{1}<x_{2}\Rightarrow f(x_{1})<f(x_{2})$
\item \textbf{decreasing} on $I \Leftrightarrow$
for every $x_{1},x_{2}\in I$\\
$x_{1}<x_{2}\Rightarrow f(x_{1})>f(x_{2})$
\end{itemize}
The function $f$ is said to be \textbf{monotonic} on $I$ if $f$
is either increasing or decreasing on $I$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{monotonicity theorem}
\vspace*{\stretch{1}}
Suppose $f$ is differentiable on an open interval $I$, then
\begin{itemize}
\item $f'(x) > 0 \text{ for each } x \in I \Rightarrow f \text{ is increasing on } I$
\item $f'(x) < 0 \text{ for each } x \in I \Rightarrow f \text{ is decreasing on } I$
\end{itemize}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{concave up\\concave down}
\vspace*{\stretch{1}}
Suppose $f$ is differentiable on an open interval $I$, then
if $f'$ is increasing on $I$ we say that $f$ is \textbf{concave up} on $I$.
\\
\\
If $f'$ is decreasing on $I$ we say that $f$ is \textbf{concave down} on $I$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{concavity theorem}
\vspace*{\stretch{1}}
Let $f$ be twice differentiable on the open interval $I$.
\begin{itemize}
\item $f''(x)>0 \text{ for each } x \in I \Rightarrow$\\
$f \text{ is concave up on } I$
\item $f''(x)<0 \text{ for each } x \in I \Rightarrow$\\
$f \text{ is concave down on } I$
\end{itemize}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{inflection point}
\vspace*{\stretch{1}}
Let $f$ be continuous at $c$, then the ordered pair $(c,f(c))$ is
called an \textbf{inflection point} of $f$ if $f$ is concave up on
one side of $c$ and concave down on the other side of $c$.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[definition]{local maximum\\local minimum\\local extremum}
\vspace*{\stretch{1}}
Let the function $f$ be defined on an interval $I$ containing $c$. We say
$f$ has a \textbf{local maximum} at $c$ iff there exists an
interval $(a,b)$ containing $c$ such that $f(x) \leq f(c)$ for all $x \in (a,b)$.
\\ \\
We say $f$ has a \textbf{local minimum} at $c$ iff there exists an
interval $(a,b)$ containing $c$ such that $f(x) \geq f(c)$ for all $x \in (a,b)$.
\\ \\
A \textbf{local extremum} is either a local maximum or a local
minimum.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{first derivative test}
\vspace*{\stretch{1}}
Let $f$ be differentiable on an open interval $(a,b)$ that contains $c$.
\begin{enumerate}
\item $f'(x)>0 \;\forall x \in (a,c) \text{ and } f'(x)<0 \;\forall x \in (c,b)
\Rightarrow f(c)$ is a \textbf{local maximum} of $f$.
\item $f'(x)<0 \;\forall x \in (a,c) \text{ and } f'(x)>0 \;\forall x \in (c,b)
\Rightarrow f(c)$ is a \textbf{local minimum} of $f$.
\item If $f'(x)$ has the same sign on both sides of c, then $f(c)$ is \textbf{not} a
\textbf{local extremum}.
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{second derivative test}
\vspace*{\stretch{1}}
Let $f$ be twice differentiable on an open interval containing $c$,
and suppose $f'(c)=0$.
\begin{enumerate}
\item If $f''(c)<0$, then $f$ has a \textbf{local maximum} at $c$.
\item If $f''(c)>0$, then $f$ has a \textbf{local minimum} at $c$.
\item If $f''(c)=0$, then the test fails.
\end{enumerate}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Theorem]{mean value theorem}
\vspace*{\stretch{1}}
If $f$ is continuous on a closed interval $[a,b]$ and differentiable
on its interior $(a,b)$, then there is at least one point $c$ in
$(a,b)$ such that
\begin{equation*}
\dfrac{f(b)-f(a)}{b-a}=f'(c)
\end{equation*}
or equivalently
\begin{equation*}
f(b)-f(a)=f'(c)(b-a)
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\end{document}