forked from jasonu/flashcards
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstatistical-mechanics.tex
168 lines (150 loc) · 4.68 KB
/
statistical-mechanics.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
\documentclass[avery5371,grid]{flashcards}
\cardfrontstyle[\large\slshape]{headings}
\cardbackstyle{empty}
\cardfrontfoot{Quantum Statistical Mechanics}
%\usepackage{amsfonts}
\usepackage{amssymb,amsmath}
\begin{document}
\begin{flashcard}[Copyright \& License]{Copyright \copyright \, 2007 Jason Underdown \\
Some rights reserved.}
\vspace*{\stretch{1}}
These flashcards and the accompanying \LaTeX \, source code are licensed
under a Creative Commons Attribution--NonCommercial--ShareAlike 2.5 License.
For more information, see creativecommons.org. You can contact the author at:
\begin{center}
\begin{small}\tt jasonu [remove-this] at physics dot utah dot edu\end{small}
\end{center}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{spin excess}
\vspace*{\stretch{1}}
Assuming $N$ is even, then we define the \textit{spin excess} by
\begin{equation*}
N_{\uparrow} - N_{\downarrow} = 2s
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Formula]{multiplicity function}
\vspace*{\stretch{1}}
\begin{equation*}
g(N,s) =
\frac{N!}{\left(\frac{1}{2}N+s \right)! \left(\frac{1}{2}N-s \right)!} =
\frac{N!}{N_{\uparrow}! \; N_{\downarrow}!}
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Formula]{Stirling's approximation}
\vspace*{\stretch{1}}
\begin{equation*}
N! \approx (2\pi N)^{1/2} N^{N} \exp(-N +(1/12)N + \cdots)
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Formula]{approximate multiplicity function}
\vspace*{\stretch{1}}
\begin{equation*}
G(N,s) \approx (2 / \pi N)^{1/2} 2^{N} \exp(-2s^2/N)
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Assumption]{fundamental assumption}
\vspace*{\stretch{1}}
The fundamental assumption of statistical mechanics is that in a closed system,
each of its \textit{accessible} states is \textit{equally likely}.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{probability of states}
\vspace*{\stretch{1}}
If $s$ is a state of a system, then the probability of that
state is given by:
\begin{equation*}
P(s) = \left\{ \begin{array}{cl}
1/g & \text{if $s$ is an accessible state} \\
0 & \text{otherwise}
\end{array} \right.
\end{equation*}
The sum of the probabilities over all states is unity.
\begin{equation*}
\sum_{s} P(s) = 1
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{expectation\\average value}
\vspace*{\stretch{1}}
Suppose that a system has some physical property $X=X(s)$ when the
system is in state $s$. The \textit{expected} or \textit{average value} of $X$ is
defined by:
\begin{equation*}
\left\langle X \right\rangle = \sum_{s} X(s)P(s)
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{entropy}
\vspace*{\stretch{1}}
\begin{equation*}
\sigma(N,U) \equiv \ln g(N,U)
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Equation]{condition for thermal equilibrium}
\vspace*{\stretch{1}}
If two systems are in thermal contact, the condition for them
to be in \textit{thermal equilibrium} is the following:
\begin{equation*}
\left(
\dfrac{\partial \sigma_{1}}{\partial U_{1}}
\right)_{\!\!\! N_1} = \left(
\dfrac{\partial \sigma_{2}}{\partial U_{1}}
\right)_{\!\!\! N_2}
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{fundamental temperature\\Kelvin temperature\\Boltzmann constant}
\vspace*{\stretch{1}}
\begin{equation*}
\dfrac{1}{\tau} \equiv
\left( \dfrac{\partial \sigma}{\partial U} \right)_{\!\!\! N}
\end{equation*}
\bigskip
\begin{equation*}
\tau = k_B T
\end{equation*}
\medskip
\begin{equation*}
k_B = 1.381 \times 10^{-23} \text{ J/K}
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Definition]{relationship between entropy\\and classical thermodynamic entropy}
\vspace*{\stretch{1}}
\begin{equation*}
\dfrac{1}{T} = \left( \dfrac{\partial S}{\partial U} \right)_{\!\!\! N}
\end{equation*}
\bigskip
\begin{equation*}
S = k_B \sigma
\end{equation*}
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Equation]{multiplicity function for the Hydrogen atom}
\vspace*{\stretch{1}}
The multiplicity function for a Hydrogen atom with
energy $E_n$, is given by
\begin{equation*}
g(n) = \sum_{l=0}^{n-1} (2l+1) = n^2
\end{equation*}
where $n$ is the principal quantum number, and $l$ is the orbital quantum
number.
\vspace*{\stretch{1}}
\end{flashcard}
\begin{flashcard}[Equation]{multiplicity function for 3D harmonic oscillator}
\vspace*{\stretch{1}}
The multiplicity function for a simple harmonic oscillator with three
degrees of freedom with energy $E_n$ is given by
\begin{equation*}
g(n) = \dfrac{1}{2}(n+1)(n+2)
\end{equation*}
where $n = n_x + n_y + n_z$.
\vspace*{\stretch{1}}
\end{flashcard}
\end{document}