-
Notifications
You must be signed in to change notification settings - Fork 0
/
TEDDY_logistic.Rmd
278 lines (187 loc) · 17.5 KB
/
TEDDY_logistic.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
---
title: "TEDDY_gene_binary_models"
author: "Sam Zimmerman"
date: "2023-03-20"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{bash}
#run lasso binary regression
while read line
do
sbatch -n 1 -c 1 --mem=50G -p short -t 0-02:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome NA all 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/models_input_files_parsed_v4_no_header.csv
sacct -S 2023-05-08 | grep "run_lasso" | grep -A 10000 "8148585" | grep -v "COMPLETED" |grep -v "FAILED" | awk '{print $1}' | while read line; do grep -m 1 "filtered_transformed_abundance_test.csv" slurm-${line}.out ; done | while read line; do grep ${line} /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/models_input_files_parsed_v4_no_header.csv; done > out_of_mem_jobs_logistic_lasso_v1.txt
while read line
do
sbatch -n 1 -c 1 --mem=100G -p short -t 0-02:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome NA all 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/out_of_mem_jobs_logistic_lasso_v1.txt
# lets check for any jobs that failed
Rscript scripts/find_failed_job_folders.R /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/models_input_files_parsed_v4_no_header.csv output_lasso_logistic_regression_NA_loss_microbiome_selection_method_all_feature_list_microbiome.rds failed_logistic_lasso_v2.txt
while read line
do
sbatch -n 1 -c 1 --mem=50G -p short -t 0-02:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome NA all 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/failed_logistic_lasso_v2.txt
# do lasso with case right before onset vs control
while read line
do
sbatch -n 1 -c 1 --mem=50G -p short -t 0-02:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome NA all 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/models_input_files_parsed_v4_before_condition_case_vs_control.csv
# do lasso with significant genes from ttest
while read line
do
sbatch -n 1 -c 1 --mem=50G -p short -t 0-02:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome NA ttest_sig 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/input_files_ttest_sig_v4.csv
sacct -S 2023-05-08 | grep "run_lasso" | grep -A 10000 "8169804" | grep -v "COMPLETED" |grep -v "FAILED" | awk '{print $1}' | while read line; do grep -m 1 "filtered_transformed_abundance_test.csv" slurm-${line}.out ; done | while read line; do grep ${line} /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/input_files_ttest_sig_v4.csv; done
Rscript scripts/find_failed_job_folders.R /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/input_files_ttest_sig_v4.csv output_lasso_logistic_regression_NA_loss_microbiome_selection_method_ttest_sig_feature_list_microbiome.rds failed_logistic_lasso_ttest.txt
while read line
do
sbatch -n 1 -c 1 --mem=50G -p short -t 0-02:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome NA ttest_sig 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/failed_logistic_lasso_ttest.txt
# ranodm forest with sig genes from ttest
while read line
do
sbatch -n 1 -c 1 --mem=50G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_rf.bash ${line} microbiome NA ttest_sig 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/input_files_ttest_sig_v4.csv
Rscript scripts/find_failed_job_folders.R /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/input_files_ttest_sig_v4.csv output_random_forest_binary_NA_loss_microbiome_selection_method_ttest_sig_feature_list_microbiome.rds failed_logistic_randomforest_ttest_microbiome_only.txt
while read line
do
sbatch -n 1 -c 1 --mem=50G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_rf.bash ${line} microbiome NA ttest_sig 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/failed_logistic_randomforest_ttest_microbiome_only.txt
# next we are going to add in clincal metadata
grep "healthy_pre-t1d" /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/models_input_files_parsed_v4_no_header.csv > health_pre_t1d_input_files_binary.csv
grep -v "healthy_pre-t1d" /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/models_input_files_parsed_v4_no_header.csv > no_health_pre_t1d_input_files_binary.csv
while read line
do
sbatch -n 1 -c 1 --mem=60G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome,number_autoantibodies,fdr,grs2 number_autoantibodies,fdr,grs2 all 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/health_pre_t1d_input_files_binary.csv
sacct -S 2023-05-29 | grep "run_lasso" | grep -A 10000 "9871785" | grep -v "COMPLETED" |grep -v "FAILED" | awk '{print $1}' | while read line; do grep -m 1 "filtered_transformed_abundance_test.csv" slurm-${line}.out ; done | while read line; do grep ${line} /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/health_pre_t1d_input_files_binary.csv; done > health_pre_t1d_input_files_binary_2.csv
while read line
do
sbatch -n 1 -c 1 --mem=150G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome,number_autoantibodies,fdr,grs2 number_autoantibodies,fdr,grs2 all 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/health_pre_t1d_input_files_binary_2.csv
sacct -S 2023-05-14 | grep "run_lasso" | grep -A 10000 "8458886" | grep "FAILED" | awk '{print $1}' | while read line; do grep -m 1 "filtered_transformed_abundance_test.csv" slurm-${line}.out ; done | while read line; do grep ${line} /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/health_pre_t1d_input_files_binary.csv; done > health_pre_t1d_input_files_binary_failed.csv
while read line
do
sbatch -n 1 -c 1 --mem=60G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome,number_autoantibodies,fdr,grs2 number_autoantibodies,fdr,grs2 all 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/health_pre_t1d_input_files_binary_failed.csv
sacct -S 2023-05-15 | grep "run_lasso" | grep -A 10000 "8558787" | grep -v "COMPLETED" | awk '{print $1}' | while read line; do grep -m 1 "filtered_transformed_abundance_test.csv" slurm-${line}.out ; done | while read line; do grep ${line} /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/health_pre_t1d_input_files_binary_failed.csv; done > health_pre_t1d_input_files_binary_failed_2.csv
while read line
do
sbatch -n 1 -c 1 --mem=100G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome,number_autoantibodies,fdr,grs2 number_autoantibodies,fdr,grs2 all 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/health_pre_t1d_input_files_binary_failed_2.csv
while read line
do
sbatch -n 1 -c 1 --mem=60G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome,fdr,grs2 fdr,grs2 all 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/health_pre_t1d_input_files_binary.csv
sacct -S 2023-10-31 | grep "run_lasso" | grep -A 10000 "20906078" | grep -v "COMPLETED" | grep -v "FAILED" | awk '{print $1}' | while read line; do grep -m 1 "filtered_transformed_abundance_test.csv" slurm-${line}.out ; done | while read line; do grep ${line} /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/health_pre_t1d_input_files_binary.csv; done > health_pre_t1d_input_files_binary_failed.csv
while read line
do
sbatch -n 1 -c 1 --mem=100G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome,fdr,grs2 fdr,grs2 all 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/health_pre_t1d_input_files_binary_failed.csv
while read line
do
sbatch -n 1 -c 1 --mem=60G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome,number_autoantibodies,fdr,grs2,Sex number_autoantibodies,fdr,grs2,Sex all 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/health_pre_t1d_input_files_binary.csv
while read line
do
sbatch -n 1 -c 1 --mem=60G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome,fdr,grs2 fdr,grs2 all 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/no_health_pre_t1d_input_files_binary.csv
sacct -S 2023-05-15 | grep "run_lasso" | grep -A 10000 "8574488" | grep -v "COMPLETED" | awk '{print $1}' | while read line; do grep -m 1 "filtered_transformed_abundance_test.csv" slurm-${line}.out ; done | while read line; do grep ${line} /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/no_health_pre_t1d_input_files_binary.csv; done > no_health_pre_t1d_input_files_binary_out_of_mem.csv
while read line
do
sbatch -n 1 -c 1 --mem=100G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome,fdr,grs2 fdr,grs2 all 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/no_health_pre_t1d_input_files_binary_out_of_mem.csv
while read line
do
sbatch -n 1 -c 1 --mem=60G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome,fdr,grs2,Sex fdr,grs2,Sex all 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/no_health_pre_t1d_input_files_binary.csv
# now do clinical data again but with ttest results
grep "healthy_pre-t1d" /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/input_files_ttest_sig_v4.csv > input_files_ttest_sig_healthy_T1D.csv
grep -v "healthy_pre-t1d" /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/input_files_ttest_sig_v4.csv > input_files_ttest_sig_not_healthy_T1D.csv
grep -v "before_condition" input_files_ttest_sig_healthy_T1D.csv > input_files_ttest_sig_healthy_T1D_no_before_cond.csv
grep -v "before_condition" input_files_ttest_sig_not_healthy_T1D.csv > input_files_ttest_sig_not_healthy_T1D_no_before_cond.csv
while read line
do
sbatch -n 1 -c 1 --mem=60G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome,number_autoantibodies,fdr,grs2 number_autoantibodies,fdr,grs2 ttest_sig 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/input_files_ttest_sig_healthy_T1D.csv
while read line
do
sbatch -n 1 -c 1 --mem=60G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiom,fdr,grs2 fdr,grs2 ttest_sig 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/input_files_ttest_sig_healthy_T1D_no_before_cond.csv
while read line
do
sbatch -n 1 -c 1 --mem=60G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome,number_autoantibodies,fdr,grs2,Sex number_autoantibodies,fdr,grs2,Sex ttest_sig 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/input_files_ttest_sig_healthy_T1D_no_before_cond.csv
while read line
do
sbatch -n 1 -c 1 --mem=60G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome,fdr,grs2 fdr,grs2 ttest_sig 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/input_files_ttest_sig_not_healthy_T1D.csv
while read line
do
sbatch -n 1 -c 1 --mem=60G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary.bash ${line} microbiome,fdr,grs2,Sex fdr,grs2,Sex ttest_sig 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/input_files_ttest_sig_not_healthy_T1D_no_before_cond.csv
while read line
do
sbatch -n 1 -c 1 --mem=60G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_rf.bash ${line} microbiome,number_autoantibodies,fdr,grs2 number_autoantibodies,fdr,grs2 ttest_sig 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/input_files_ttest_sig_healthy_T1D.csv
while read line
do
sbatch -n 1 -c 1 --mem=60G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_rf.bash ${line} microbiome,fdr,grs2 fdr,grs2 ttest_sig 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/input_files_ttest_sig_healthy_T1D_no_before_cond.csv
while read line
do
sbatch -n 1 -c 1 --mem=60G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_rf.bash ${line} microbiome,number_autoantibodies,fdr,grs2,Sex number_autoantibodies,fdr,grs2,Sex ttest_sig 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/input_files_ttest_sig_healthy_T1D_no_before_cond.csv
while read line
do
sbatch -n 1 -c 1 --mem=60G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_rf.bash ${line} microbiome,fdr,grs2 fdr,grs2 ttest_sig 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/input_files_ttest_sig_not_healthy_T1D.csv
while read line
do
sbatch -n 1 -c 1 --mem=60G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_rf.bash ${line} microbiome,fdr,grs2,Sex fdr,grs2,Sex ttest_sig 1 NA
done < /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/input_files_ttest_sig_not_healthy_T1D_no_before_cond.csv
```
#Run logistic regression. Just look at basic metadata as base model to compare
```{bash}
grep "healthy_pre-t1d" /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/models_input_files_parsed_v4_no_header.csv > health_pre_t1d_input_files_binary.csv
grep -v "healthy_pre-t1d" /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/models_input_files_parsed_v4_no_header.csv > no_health_pre_t1d_input_files_binary.csv
grep -v "before_condition" health_pre_t1d_input_files_binary.csv > health_pre_t1d_input_files_binary_no_before_cond.csv
grep -v "before_condition" no_health_pre_t1d_input_files_binary.csv > no_health_pre_t1d_input_files_binary_no_before_cond.csv
split -l 10 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/health_pre_t1d_input_files_binary.csv /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/health_pre_t1d_input_files_binary_logit_
split -l 50 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/no_health_pre_t1d_input_files_binary.csv /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/no_health_pre_t1d_input_files_binary_logit_
split -l 10 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/health_pre_t1d_input_files_binary_no_before_cond.csv /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/health_pre_t1d_input_files_binary_no_before_cond_
split -l 50 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/no_health_pre_t1d_input_files_binary_no_before_cond.csv /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/no_health_pre_t1d_input_files_binary_no_before_cond_
for x in health_pre_t1d_input_files_binary_logit_*
do
sbatch -n 1 -c 1 --mem=5G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_logistic_regression_batch.bash ${x} number_autoantibodies,fdr,grs2
done
for x in health_pre_t1d_input_files_binary_no_before_cond_*
do
sbatch -n 1 -c 1 --mem=5G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_logistic_regression_batch.bash ${x} fdr,grs2
done
for x in health_pre_t1d_input_files_binary_no_before_cond_*
do
sbatch -n 1 -c 1 --mem=5G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_logistic_regression_batch.bash ${x} number_autoantibodies,fdr,grs2,Sex
done
for x in no_health_pre_t1d_input_files_binary_logit_*
do
sbatch -n 1 -c 1 --mem=5G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_logistic_regression_batch.bash ${x} fdr,grs2
done
for x in no_health_pre_t1d_input_files_binary_no_before_cond_*
do
sbatch -n 1 -c 1 --mem=5G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_logistic_regression_batch.bash ${x} fdr,grs2,Sex
done
```
#Lastly we want to get the before_condition ones and see if other covariates could predict T1D other than microbiome
#Also DO NOT USE TIME as a clinical feature in the above scripts. It will break them!!! same goes for survival scripts
```{bash}
grep "before_condition" /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/models_input_files_parsed_v4_no_header.csv > models_input_files_parsed_v4_no_header_before_condition.csv
split -l 10 models_input_files_parsed_v4_no_header_before_condition.csv models_input_files_parsed_v4_no_header_before_condition_
for x in models_input_files_parsed_v4_no_header_before_condition_*
do
sbatch -n 1 -c 1 --mem=5G -p short -t 0-03:00 /n/data1/joslin/icrb/kostic/szimmerman/TEDDY_analysis/scripts/run_lasso_binary_all_clinical_bulk.bash ${x} Maternal_BMI,Maternal_WeightGain_Pregnancy,Birth_Weight,Gestational_Age,fdr,apgar_score,time_to_brstfed_stop,age_at_solid_start,age_at_cow_milk_start,age_at_gluten_start,age_at_cereals_start,age_at_meats_start,age_at_vegetables_start,age_at_fruits_start,time_to_abx,time_since_abx,time,Maternal_PreEclampsia_Toxemia,Maternal_Weight_Gain_Aagaard,Sex,Maternal_Medication,Preterm,brst_fed,Maternal_Antibiotics,Geographical_Location,delivery_simple,HLA_Category,Maternal_Diabetes,Maternal_BMI_Category,Maternal_Diabetes_Medication,Insulin,Metformin,Glyburide,antihypertensives NA NA 1 NA
done
```