-
Notifications
You must be signed in to change notification settings - Fork 3
/
utils.py
225 lines (186 loc) · 7.47 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import torch
import time
import datetime
from collections import defaultdict, deque, OrderedDict
import pydicom
import numpy as np
class SmoothedValue:
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} ({global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
)
class MetricLogger(object):
def __init__(self, delimiter="\t", n=1):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
self.n = n
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(value=v, n=self.n)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'")
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append(f"{name}: {str(meter)}")
return self.delimiter.join(loss_str)
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, header=None):
i = 0
if not header:
header = ""
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt="{avg:.4f}")
data_time = SmoothedValue(fmt="{avg:.4f}")
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
if torch.cuda.is_available():
log_msg = self.delimiter.join(
[
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
"max mem: {memory:.0f}",
]
)
else:
log_msg = self.delimiter.join(
[header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == len(iterable) - 1:
eta_seconds = iter_time.global_avg * (len(iterable) - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
print(
log_msg.format(
i,
len(iterable),
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB,
)
)
else:
print(
log_msg.format(
i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time)
)
)
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print(f"{header} Total time: {total_time_str} ({total_time / len(iterable):.4f} s / it)")
def fix_optimizer(optimizer):
# Optimizer Error fix...!
for state in optimizer.state.values():
for k, v in state.items():
if torch.is_tensor(v):
state[k] = v.cuda()
def str2bool(value):
value = value.lower()
if value in ['true', '1', 'yes', 'y', 'on']:
return True
elif value in ['false', '0', 'no', 'n', 'off']:
return False
else:
raise ValueError(f"Invalid boolean value: {value}")
def check_checkpoint_if_wrapper(model_state_dict):
if list(model_state_dict.keys())[0].startswith('module'):
return OrderedDict({k.replace('module.', ''): v for k, v in model_state_dict.items()}) # 'module.' 제거
else:
return model_state_dict
def dicom_denormalize(image, MIN_HU=-1024.0, MAX_HU=3072.0):
# image = (image - 0.5) / 0.5 # Range -1.0 ~ 1.0 @ We do not use -1~1 range becuase there is no Tanh act.
image = (MAX_HU - MIN_HU)*image + MIN_HU
return image
def save_dicom(original_dcm_path, pred_output, save_path):
# pydicom 으로 저장시 자동으로 -1024를 가하는 부분이 있기에 setting 해줘야 함.
# pred_img's Range: -1024 ~ 3072
pred_img = pred_output.copy()
# print("before == ", pred_img.max(), pred_img.min(), pred_img.dtype) # before == 2557.0 / -1024.0 / float32
dcm = pydicom.dcmread(original_dcm_path)
intercept = dcm.RescaleIntercept
slope = dcm.RescaleSlope
# pred_img -= np.int16(intercept)
pred_img -= np.float32(intercept)
pred_img = pred_img.astype(np.int16)
if slope != 1:
pred_img = pred_img.astype(np.float32) / slope
pred_img = pred_img.astype(np.int16)
dcm.PixelData = pred_img.squeeze().tobytes()
# dcm.PixelData = pred_img.astype('uint16').squeeze().tobytes()
dcm.save_as(save_path)
# print("after == ", pred_img.max(), pred_img.min(), pred_img.dtype) # after == 3581 / 0 / int16
# print(save_path)
def print_args(args):
print('***********************************************')
print('---------- DATA ---------------')
print('Dataset Name: ', args.dataset)
print('Dataset [train] Type: ', args.dataset_type_train)
print('Dataset [valid] Type: ', args.dataset_type_valid)
print('---------- Model --------------')
print('Resume From: ', args.resume)
print('Checkpoint To: ', args.checkpoint_dir)
print('Save To: ', args.save_dir)
print('---------- Optimizer ----------')
print('Learning Rate: ', args.lr)
print('Batchsize: ', args.batch_size)
def print_args_test(args):
print('***********************************************')
print('---------- DATA -----------')
print('Dataset Name: ', args.dataset)
print('Dataset [test] Type: ', args.dataset_type_test)
print('---------- Model --------------')
print('Resume From: ', args.resume)
print('Checkpoint To: ', args.checkpoint_dir)
print('Save To: ', args.save_dir)