-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathJavaSparkSQL.java
263 lines (222 loc) · 8.46 KB
/
JavaSparkSQL.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
/**
* Copyright (C) 2015 Baifendian Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.examples.sql;
import java.io.Serializable;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.hive.HiveContext;
/**
* spark sql测试
* <p>
*
* @author : dsfan
* @date : 2016年3月22日
*/
public class JavaSparkSQL {
public static void main(String[] args) throws Exception {
SparkConf sparkConf = new SparkConf().setAppName("JavaSparkSQL");
JavaSparkContext ctx = new JavaSparkContext(sparkConf);
SQLContext sqlContext = new SQLContext(ctx);
// test text
DataFrame schemaPeople = testTextDataset(ctx, sqlContext);
// test parquest
testParquestDataset(sqlContext, schemaPeople);
// test json
testJsonDataset(ctx, sqlContext);
// test Hive
testHiveDataset(ctx);
// test JDBC
testJdbcDataset(ctx, sqlContext);
ctx.stop();
}
/**
* Data source: RDD
* <p>
*
* @param ctx
* @param sqlContext
* @return
*/
private static DataFrame testTextDataset(JavaSparkContext ctx, SQLContext sqlContext) {
System.out.println("=== Data source: RDD ===");
// 数据源为txt文本
// 加载txt文件,文件在hdfs中
JavaRDD<Person> people = ctx.textFile("/tmp/examples/people.txt").map(new Function<String, Person>() {
@Override
public Person call(String line) {
String[] parts = line.split(",");
Person person = new Person();
person.setName(parts[0]);
person.setAge(Integer.parseInt(parts[1].trim()));
return person;
}
});
// 创建一个DataFrame,并将其注册为一个Table
DataFrame schemaPeople = sqlContext.createDataFrame(people, Person.class);
schemaPeople.registerTempTable("people");
// SQL查询,筛选条件(age >= 13 AND age <= 19)
DataFrame teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19");
// 处理(名称前加"Name:")并打印结果
dataframe2RddAndPrint(teenagers);
return schemaPeople; // 供后续使用
}
/**
* Data source: Parquet File
* <p>
*
* @param sqlContext
* @param schemaPeople
*/
private static void testParquestDataset(SQLContext sqlContext, DataFrame schemaPeople) {
System.out.println("=== Data source: Parquet File ===");
// 数据源为parquet文件
// 将上面的DataFrame查询报错为 parquet 文件
schemaPeople.write().parquet("people.parquet");
// 再将刚刚存储的parquet文件读取出来
DataFrame parquetFile = sqlContext.read().parquet("people.parquet");
// 将parquetFile注册为一个Table
parquetFile.registerTempTable("parquetFile");
// 执行SQL查询
DataFrame teenagers = sqlContext.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19");
// 处理(名称前加"Name:")并打印结果
dataframe2RddAndPrint(teenagers);
}
/**
* Data source: JSON Dataset
* <p>
*
* @param ctx
* @param sqlContext
*/
private static void testJsonDataset(JavaSparkContext ctx, SQLContext sqlContext) {
System.out.println("=== Data source: JSON Dataset ===");
// 数据源为json文件
String path = "/tmp/examples/people.json"; // hdfs中
// 从json数据源创建DataFrame
DataFrame peopleFromJsonFile = sqlContext.read().json(path);
// 由于json格式的文件能够直接推断出数据结构,所以我们直接打印下看看
peopleFromJsonFile.printSchema();
// 打印如下:
// root
// |-- age: long (nullable = true)
// |-- name: string (nullable = true)
// 将DataFrame注册为一个Table
peopleFromJsonFile.registerTempTable("people");
// 执行SQL查询
DataFrame teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19");
// 处理(名称前加"Name:")并打印结果
dataframe2RddAndPrint(teenagers);
// 换一个json数据结构的例子
List<String> jsonData = Arrays.asList("{\"name\":\"Yin\",\"address\":{\"city\":\"Columbus\",\"state\":\"Ohio\"}}");
JavaRDD<String> anotherPeopleRDD = ctx.parallelize(jsonData);
DataFrame peopleFromJsonRDD = sqlContext.read().json(anotherPeopleRDD.rdd());
// 打印出新的数据结构
peopleFromJsonRDD.printSchema();
// 打印如下:
// root
// |-- address: struct (nullable = true)
// | |-- city: string (nullable = true)
// | |-- state: string (nullable = true)
// |-- name: string (nullable = true)
// 将DataFrame注册为一个Table
peopleFromJsonRDD.registerTempTable("people2");
// 执行SQL查询
DataFrame peopleWithCity = sqlContext.sql("SELECT name, address.city FROM people2");
List<String> nameAndCity = peopleWithCity.toJavaRDD().map(new Function<Row, String>() {
@Override
public String call(Row row) {
return "Name: " + row.getString(0) + ", City: " + row.getString(1);
}
}).collect();
for (String name : nameAndCity) {
System.out.println(name);
}
}
/**
* Data source: JDBC Dataset(以MySQL为例)
* <p>
*
* @param ctx
* @param sqlContext
*/
private static void testJdbcDataset(JavaSparkContext ctx, SQLContext sqlContext) {
System.out.println("=== Data source: JDBC Dataset(以MySQL为例) ===");
Map<String, String> options = new HashMap<String, String>();
options.put("url", "jdbc:mysql://172.18.1.22:3306/test");
options.put("dbtable", "people");
options.put("user", "hive");
options.put("password", "hive123");
DataFrame jdbcDF = sqlContext.read().format("jdbc").options(options).load();
jdbcDF.registerTempTable("people");
DataFrame teenagers = jdbcDF.sqlContext().sql("SELECT name FROM people WHERE age >= 13 AND age <= 19");
// 处理(名称前加"Name:")并打印结果
dataframe2RddAndPrint(teenagers);
}
/**
* Data source: Hive Dataset
* <p>
*
* @param ctx
*/
private static void testHiveDataset(JavaSparkContext ctx) {
System.out.println("=== Data source: Hive Dataset ===");
HiveContext hiveContext = new HiveContext(ctx);
DataFrame teenagers = hiveContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19");
dataframe2RddAndPrint(teenagers);
}
/**
* dataframe转化为rdd并输出结果
* <p>
*
* @param teenagers4
*/
private static void dataframe2RddAndPrint(DataFrame teenagers4) {
List<String> teenagerNames = teenagers4.toJavaRDD().map(new Function<Row, String>() {
@Override
public String call(Row row) {
return "Name: " + row.getString(0);
}
}).collect();
for (String name : teenagerNames) {
System.out.println(name);
}
}
public static class Person implements Serializable {
private String name;
private int age;
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public int getAge() {
return age;
}
public void setAge(int age) {
this.age = age;
}
}
}