forked from junxiaosong/AlphaZero_Gomoku
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpolicy_value_net.py
76 lines (70 loc) · 4.03 KB
/
policy_value_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# -*- coding: utf-8 -*-
"""
@author: Junxiao Song
"""
from __future__ import print_function
import theano
import theano.tensor as T
import lasagne
class PolicyValueNet():
"""policy-value network """
def __init__(self, board_width, board_height, net_params=None):
self.board_width = board_width
self.board_height = board_height
self.learning_rate = T.scalar('learning_rate')
self.l2_const = 1e-4 # coef of l2 penalty
self.create_policy_value_net()
self._loss_train_op()
if net_params:
lasagne.layers.set_all_param_values([self.policy_net, self.value_net], net_params)
def create_policy_value_net(self):
"""create the policy value network """
self.state_input = T.tensor4('state')
self.winner = T.vector('winner')
self.mcts_probs = T.matrix('mcts_probs')
network = lasagne.layers.InputLayer(shape=(None, 4, self.board_width, self.board_height),
input_var=self.state_input)
# conv layers
network = lasagne.layers.Conv2DLayer(network, num_filters=32, filter_size=(3, 3), pad='same')
network = lasagne.layers.Conv2DLayer(network, num_filters=64, filter_size=(3, 3), pad='same')
network = lasagne.layers.Conv2DLayer(network, num_filters=128, filter_size=(3, 3), pad='same')
# action policy layers
policy_net = lasagne.layers.Conv2DLayer(network, num_filters=4, filter_size=(1, 1))
self.policy_net = lasagne.layers.DenseLayer(policy_net, num_units=self.board_width*self.board_height,
nonlinearity=lasagne.nonlinearities.softmax)
# state value layers
value_net = lasagne.layers.Conv2DLayer(network, num_filters=2, filter_size=(1, 1))
value_net = lasagne.layers.DenseLayer(value_net, num_units=64)
self.value_net = lasagne.layers.DenseLayer(value_net, num_units=1, nonlinearity=lasagne.nonlinearities.tanh)
# get action probs and state score value
self.action_probs, self.value = lasagne.layers.get_output([self.policy_net, self.value_net])
self.policy_value = theano.function([self.state_input], [self.action_probs, self.value] ,allow_input_downcast=True)
def policy_value_fn(self, board):
"""
input: board
output: a list of (action, probability) tuples for each available action and the score of the board state
"""
legal_positions = board.availables
current_state = board.current_state()
act_probs, value = self.policy_value(current_state.reshape(-1, 4, self.board_width, self.board_height))
act_probs = zip(legal_positions, act_probs.flatten()[legal_positions])
return act_probs, value[0][0]
def _loss_train_op(self):
"""
Three loss terms:
loss = (z - v)^2 + pi^T * log(p) + c||theta||^2
"""
params = lasagne.layers.get_all_params([self.policy_net, self.value_net], trainable=True)
value_loss = lasagne.objectives.squared_error(self.winner, self.value.flatten())
policy_loss = lasagne.objectives.categorical_crossentropy(self.action_probs, self.mcts_probs)
l2_penalty = lasagne.regularization.apply_penalty(params, lasagne.regularization.l2)
self.loss = lasagne.objectives.aggregate(value_loss + policy_loss, mode='mean') + self.l2_const*l2_penalty
# policy entropy,for monitoring only
self.entropy = -T.mean(T.sum(self.action_probs * T.log(self.action_probs + 1e-10), axis=1))
# get the train op
updates = lasagne.updates.adam(self.loss, params, learning_rate=self.learning_rate)
self.train_step = theano.function([self.state_input, self.mcts_probs, self.winner, self.learning_rate],
[self.loss, self.entropy], updates=updates, allow_input_downcast=True)
def get_policy_param(self):
net_params = lasagne.layers.get_all_param_values([self.policy_net, self.value_net])
return net_params