|
| 1 | +""" |
| 2 | +Median of Two Sorted Arrays |
| 3 | +
|
| 4 | +Problem: Given two sorted arrays nums1 and nums2 of sizes m and n, |
| 5 | +return the median of the two sorted arrays. |
| 6 | +
|
| 7 | +This implementation uses a partition-based divide-and-conquer approach |
| 8 | +to achieve optimal time complexity. |
| 9 | +
|
| 10 | +Time Complexity: O(log(min(m, n))) |
| 11 | +Space Complexity: O(1) |
| 12 | +
|
| 13 | +Reference: https://leetcode.com/problems/median-of-two-sorted-arrays/ |
| 14 | +""" |
| 15 | + |
| 16 | +from __future__ import annotations |
| 17 | + |
| 18 | + |
| 19 | +def find_median_sorted_arrays( |
| 20 | + nums1: list[int | float], nums2: list[int | float] |
| 21 | +) -> float: |
| 22 | + """ |
| 23 | + Find the median of two sorted arrays using binary search. |
| 24 | +
|
| 25 | + The algorithm works by partitioning both arrays such that: |
| 26 | + - All elements on the left side are smaller than elements on the right side |
| 27 | + - The left side has the same number of elements as the right side (or one more) |
| 28 | +
|
| 29 | + Args: |
| 30 | + nums1: First sorted array |
| 31 | + nums2: Second sorted array |
| 32 | +
|
| 33 | + Returns: |
| 34 | + The median of the two sorted arrays as a float |
| 35 | +
|
| 36 | + Raises: |
| 37 | + ValueError: If both input arrays are empty |
| 38 | +
|
| 39 | + Examples: |
| 40 | + >>> find_median_sorted_arrays([1, 3], [2]) |
| 41 | + 2.0 |
| 42 | + >>> find_median_sorted_arrays([1, 2], [3, 4]) |
| 43 | + 2.5 |
| 44 | + >>> find_median_sorted_arrays([], [1]) |
| 45 | + 1.0 |
| 46 | + >>> find_median_sorted_arrays([2], []) |
| 47 | + 2.0 |
| 48 | + >>> find_median_sorted_arrays([1, 2, 3, 4, 5], [6, 7, 8]) |
| 49 | + 4.5 |
| 50 | + >>> find_median_sorted_arrays([1.5, 2.5], [2.0, 3.0]) |
| 51 | + 2.25 |
| 52 | + >>> find_median_sorted_arrays([1, 1, 1], [1, 1, 1]) |
| 53 | + 1.0 |
| 54 | + >>> find_median_sorted_arrays([-5, -3, -1], [0, 2, 4]) |
| 55 | + -0.5 |
| 56 | + >>> find_median_sorted_arrays([1], [2, 3, 4, 5, 6]) |
| 57 | + 3.5 |
| 58 | + >>> find_median_sorted_arrays([], []) |
| 59 | + Traceback (most recent call last): |
| 60 | + ... |
| 61 | + ValueError: Both input arrays are empty |
| 62 | + """ |
| 63 | + if not nums1 and not nums2: |
| 64 | + raise ValueError("Both input arrays are empty") |
| 65 | + |
| 66 | + # Ensure nums1 is the smaller array for efficiency |
| 67 | + if len(nums1) > len(nums2): |
| 68 | + nums1, nums2 = nums2, nums1 |
| 69 | + |
| 70 | + m, n = len(nums1), len(nums2) |
| 71 | + total_left = (m + n + 1) // 2 # Number of elements on the left side |
| 72 | + |
| 73 | + left, right = 0, m |
| 74 | + |
| 75 | + while left <= right: |
| 76 | + # Partition indices for nums1 and nums2 |
| 77 | + i = (left + right) // 2 # Partition index for nums1 |
| 78 | + j = total_left - i # Partition index for nums2 |
| 79 | + |
| 80 | + # Get the boundary elements around the partitions |
| 81 | + nums1_left_max = nums1[i - 1] if i > 0 else float("-inf") |
| 82 | + nums1_right_min = nums1[i] if i < m else float("inf") |
| 83 | + |
| 84 | + nums2_left_max = nums2[j - 1] if j > 0 else float("-inf") |
| 85 | + nums2_right_min = nums2[j] if j < n else float("inf") |
| 86 | + |
| 87 | + # Check if we found the correct partition |
| 88 | + if nums1_left_max <= nums2_right_min and nums2_left_max <= nums1_right_min: |
| 89 | + # Correct partition found |
| 90 | + if (m + n) % 2 == 1: |
| 91 | + # Odd total length: median is the max of left side |
| 92 | + return float(max(nums1_left_max, nums2_left_max)) |
| 93 | + else: |
| 94 | + # Even total length: median is average of max(left) and min(right) |
| 95 | + left_max = max(nums1_left_max, nums2_left_max) |
| 96 | + right_min = min(nums1_right_min, nums2_right_min) |
| 97 | + return (left_max + right_min) / 2.0 |
| 98 | + elif nums1_left_max > nums2_right_min: |
| 99 | + # We are too far right in nums1, move left |
| 100 | + right = i - 1 |
| 101 | + else: |
| 102 | + # We are too far left in nums1, move right |
| 103 | + left = i + 1 |
| 104 | + |
| 105 | + # This should not be reached if inputs are valid sorted arrays |
| 106 | + raise ValueError("Input arrays are not sorted or some unexpected error occurred") |
| 107 | + |
| 108 | + |
| 109 | +if __name__ == "__main__": |
| 110 | + import doctest |
| 111 | + |
| 112 | + doctest.testmod() |
0 commit comments