-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
356 lines (280 loc) · 14.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import random
import glob
import logging
from tqdm import tqdm
import torch.utils.data
import torch.optim as optim
from common.opt import opts
from common.utils import *
from common.camera import get_uvd2xyz
from common.load_data_h36m import Fusion as Fusion_h36m
from common.h36m_dataset import Human36mDataset
from model.block.refine import refine
from model.strided_posegraphnet import Model as StridedPoseGraphNet
opt = opts().parse()
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu
print(opt)
def train(opt, actions, train_loader, model, optimizer, epoch):
return step('train', opt, actions, train_loader, model, optimizer, epoch)
def val(opt, actions, val_loader, model):
with torch.no_grad():
return step('test', opt, actions, val_loader, model)
def step(split, opt, actions, dataLoader, model, optimizer=None, epoch=None):
model_trans = model['trans']
model_refine = model['refine']
if split == 'train':
model_trans.train()
if opt.freeze_spatial_module and opt.set_spatial_module_eval_mode:
model_trans.set_spatial_module_eval_mode()
model_refine.train()
else:
model_trans.eval()
model_refine.eval()
loss_all = {'loss': AccumLoss(), 'loss_single': AccumLoss(), 'loss_VTE': AccumLoss(), 'loss_vis': AccumLoss()}
action_error_sum = define_error_mpjpe_list(actions)
action_error_sum_refine = define_error_mpjpe_list(actions)
# error_sum_joints = define_error_joints_mpjpe_list(opt, actions)
for i, data in enumerate(tqdm(dataLoader, 0)):
batch_cam, gt_3D, gt_2D, input_2D, scale, bb_box, extra = data
action, subject, cam_ind = extra
[input_2D, gt_3D, gt_2D, batch_cam, scale, bb_box] = get_variable(split,
[input_2D, gt_3D, gt_2D, batch_cam,
scale, bb_box])
if opt.use_2d_gt:
input_2D = gt_2D
if split == 'train':
output_3D, output_3D_VTE = model_trans(input_2D)
else:
input_2D, output_3D, output_3D_VTE = input_augmentation(input_2D, model_trans)
out_target = gt_3D.clone()
out_target[:, :, 0] = 0
if out_target.size(1) > 1:
out_target_single = out_target[:, opt.pad].unsqueeze(1)
gt_3D_single = gt_3D[:, opt.pad].unsqueeze(1)
else:
out_target_single = out_target
gt_3D_single = gt_3D
if opt.refine:
pred_uv = input_2D[:, opt.pad, :, :].unsqueeze(1)
uvd = torch.cat((pred_uv, output_3D[:, :, :, 2].unsqueeze(-1)), -1)
xyz = get_uvd2xyz(uvd, gt_3D_single, batch_cam)
xyz[:, :, 0, :] = 0
output_3D = model_refine(output_3D, xyz)
N, F = input_2D.size(0), input_2D.size(1)
if split == 'train':
if opt.refine:
loss = mpjpe_cal(output_3D, out_target_single)
else:
loss_VTE = mpjpe_cal(output_3D_VTE, out_target)
loss_all['loss_VTE'].update(loss_VTE.detach().cpu().numpy() * N, N)
loss_single = mpjpe_cal(output_3D, out_target_single)
loss_all['loss_single'].update(loss_single.detach().cpu().numpy() * N, N)
loss = loss_VTE + loss_single
loss_all['loss'].update(loss.detach().cpu().numpy() * N, N)
optimizer.zero_grad()
loss.backward()
optimizer.step()
elif split == 'test':
output_3D[:, :, 0, :] = 0
action_error_sum = test_calculation_mpjpe(output_3D, out_target, action, action_error_sum)
if opt.refine:
action_error_sum_refine = test_calculation_mpjpe(output_3D, out_target, action, action_error_sum_refine)
if split == 'train':
return loss_all['loss'].avg, loss_all['loss_single'].avg, loss_all['loss_VTE'].avg
elif split == 'test':
if opt.refine:
p1, p2 = print_error_mpjpe(opt.dataset, action_error_sum_refine, opt.train)
else:
p1, p2 = print_error_mpjpe(opt.dataset, action_error_sum, opt.train)
return p1, p2
def input_augmentation(input_2D, model_trans):
joints_left = [4, 5, 6, 11, 12, 13]
joints_right = [1, 2, 3, 14, 15, 16]
input_2D_non_flip = input_2D[:, 0]
input_2D_flip = input_2D[:, 1]
output_3D_non_flip, output_3D_non_flip_VTE = model_trans(input_2D_non_flip)
output_3D_flip, output_3D_flip_VTE = model_trans(input_2D_flip)
output_3D_flip_VTE[:, :, :, 0] *= -1
output_3D_flip[:, :, :, 0] *= -1
output_3D_flip_VTE[:, :, joints_left + joints_right, :] = output_3D_flip_VTE[:, :, joints_right + joints_left, :]
output_3D_flip[:, :, joints_left + joints_right, :] = output_3D_flip[:, :, joints_right + joints_left, :]
output_3D_VTE = (output_3D_non_flip_VTE + output_3D_flip_VTE) / 2
output_3D = (output_3D_non_flip + output_3D_flip) / 2
input_2D = input_2D_non_flip
return input_2D, output_3D, output_3D_VTE
def print_layers(model):
for name, p in model.named_parameters():
if p.requires_grad:
psize_list = list(p.size())
psize_str = [str(x) for x in psize_list]
psize_str = ",".join(psize_str)
print(name + "\t" + psize_str)
if __name__ == '__main__':
torch.autograd.set_detect_anomaly(True)
opt.manualSeed = 0
random.seed(opt.manualSeed)
np.random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
torch.cuda.manual_seed(opt.manualSeed)
torch.cuda.manual_seed_all(opt.manualSeed)
if opt.train:
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%Y/%m/%d %H:%M:%S', \
filename=os.path.join(opt.checkpoint, 'train.log'), level=logging.INFO)
root_path = opt.root_path
print('Loading dataset...')
dataset_dir = os.path.join(root_path, opt.dataset)
if opt.dataset == 'h36m':
dataset_path = os.path.join(dataset_dir, 'data_3d_' + opt.dataset + '.npz')
dataset = Human36mDataset(dataset_path, opt)
if opt.train:
train_data = Fusion_h36m(opt=opt, train=True, dataset=dataset, root_path=dataset_dir)
train_dataloader = torch.utils.data.DataLoader(train_data, batch_size=opt.batch_size,
shuffle=True, num_workers=int(opt.workers), pin_memory=True)
test_data = Fusion_h36m(opt=opt, train=False, dataset=dataset, root_path=dataset_dir)
test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=opt.batch_size,
shuffle=False, num_workers=int(opt.workers), pin_memory=True)
opt.out_joints = dataset.skeleton().num_joints()
else:
raise KeyError('Invalid dataset')
actions = define_actions(opt.actions, opt.dataset)
if opt.occlusion_augmentation_train or opt.occlusion_augmentation_test:
print(f'INFO: Occluded: Joint {opt.occluded_joint} in {opt.num_occluded_f} frames')
model = {}
model_trans = StridedPoseGraphNet(opt).cuda()
# Use pretrained weights for spatial part without pose regression head
if opt.pretrained_spatial_module_init:
filename = os.path.join(opt.pretrained_spatial_module_dir, opt.pretrained_spatial_module)
pretrained_dict = torch.load(filename)['state_dict']
model_trans.Transformer.load_state_dict(pretrained_dict, strict=False)
opt.freeze_spatial_module = True
model_trans.freeze_spatial_module()
model['trans'] = model_trans
model['refine'] = refine(opt).cuda()
model_dict = model['trans'].state_dict()
all_param = []
lr_spatial = opt.spatial_module_lr
lr = opt.lr
lr_refine = opt.lr_refine
for i_model in model:
all_param += list(model[i_model].parameters())
optimizer_all = optim.Adam([
{"params": model['trans'].Transformer.parameters(), "lr": opt.spatial_module_lr},
{"params": model['trans'].Transformer_reduce.parameters()},
{"params": model['trans'].Transformer_full.parameters()},
{"params": model['trans'].fcn.parameters()},
{"params": model['trans'].head.parameters()},
{"params": model['refine'].parameters(), "lr": opt.lr_refine},
], lr=opt.lr, amsgrad=True)
epoch_start = 1
if opt.reload:
model_path = sorted(glob.glob(os.path.join(opt.previous_dir, '*.pth')))
no_refine_path = []
for path in model_path:
if path.split('/')[-1][0] == 'n' and 'best' in path:
no_refine_path = path
print(no_refine_path)
break
pre_dict = torch.load(no_refine_path)
pre_dict_model = pre_dict['model_pos']
for name, key in model_dict.items():
model_dict[name] = pre_dict_model[name]
model['trans'].load_state_dict(model_dict)
if opt.freeze_spatial_module:
model['trans'].freeze_spatial_module()
if opt.freeze_trans_module:
model['trans'].freeze()
if opt.train and opt.resume:
optimizer_all.load_state_dict(pre_dict['optimizer'])
epoch_start = pre_dict['epoch'] + 1
if pre_dict['epoch'] % opt.large_decay_epoch == 0:
for param_group in optimizer_all.param_groups:
param_group['lr'] *= opt.lr_decay_large
lr_spatial = optimizer_all.param_groups[0]['lr']
lr = optimizer_all.param_groups[1]['lr']
lr_refine = optimizer_all.param_groups[5]['lr']
else:
for param_group in optimizer_all.param_groups:
param_group['lr'] *= opt.lr_decay
lr_spatial = optimizer_all.param_groups[0]['lr']
lr = optimizer_all.param_groups[1]['lr']
lr_refine = optimizer_all.param_groups[5]['lr']
refine_dict = model['refine'].state_dict()
if opt.refine_reload:
model_path = sorted(glob.glob(os.path.join(opt.previous_dir, '*.pth')))
refine_path = []
for path in model_path:
if path.split('/')[-1][0] == 'r' and 'best' in path:
refine_path = path
print(refine_path)
break
pre_dict_refine = torch.load(refine_path)
pre_dict_refine_model = pre_dict_refine['model_pos']
for name, key in refine_dict.items():
refine_dict[name] = pre_dict_refine_model[name]
model['refine'].load_state_dict(refine_dict)
if opt.train and opt.resume:
optimizer_all.load_state_dict(pre_dict_refine['optimizer'])
epoch_start = pre_dict_refine['epoch'] + 1
if pre_dict_refine['epoch'] % opt.large_decay_epoch == 0:
for param_group in optimizer_all.param_groups:
param_group['lr'] *= opt.lr_decay_large
lr_spatial = optimizer_all.param_groups[0]['lr']
lr = optimizer_all.param_groups[1]['lr']
lr_refine = optimizer_all.param_groups[5]['lr']
else:
for param_group in optimizer_all.param_groups:
param_group['lr'] *= opt.lr_decay
lr_spatial = optimizer_all.param_groups[0]['lr']
lr = optimizer_all.param_groups[1]['lr']
lr_refine = optimizer_all.param_groups[5]['lr']
count_model_params = sum(p.numel() for p in all_param)
print('INFO: Parameter count:', count_model_params)
count_trainable_model_params = sum(p.numel() for p in all_param if p.requires_grad)
print('INFO: Trainable parameter count:', count_trainable_model_params)
for epoch in range(epoch_start, opt.nepoch):
print('Epoch: ' + str(epoch))
print('LR spatial: ' + str(lr_spatial))
print('LR: ' + str(lr))
if opt.refine:
print('LR refine: ' + str(lr_refine))
if opt.train:
# Reset seed to get the same occluded train dataset per epoch
# if opt.occlusion_augmentation_train:
# train_data.reset_seed(200)
loss, loss_single, loss_VTE = train(opt, actions, train_dataloader, model, optimizer_all, epoch)
# Reset seed to get the same occluded val dataset per epoch
if opt.occlusion_augmentation_test:
test_data.reset_seed(201)
p1, p2 = val(opt, actions, test_dataloader, model)
if opt.train:
if p1 < opt.previous_best_threshold:
opt.previous_name = save_model(opt.previous_name, opt.checkpoint, epoch, p1, optimizer_all,
model['trans'], 'no_refine_best')
if opt.refine:
opt.previous_refine_name = save_model(opt.previous_refine_name, opt.checkpoint, epoch,
p1, optimizer_all, model['refine'], 'refine_best')
opt.previous_best_threshold = p1
if epoch % opt.save_ckpt_intervall == 0:
save_model(None, opt.checkpoint, epoch, p1, optimizer_all, model['trans'], 'no_refine')
if opt.refine:
save_model(None, opt.checkpoint, epoch, p1, optimizer_all, model['refine'], 'refine')
if not opt.train:
print('p1: %.2f, p2: %.2f' % (p1, p2))
break
else:
logging.info('epoch: %d, lr: %.7f, loss: %.4f, loss_single: %.4f, loss_VTE: %.4f, p1: %.2f, p2: %.2f' % (
epoch, lr, loss, loss_single, loss_VTE, p1, p2))
print('e: %d, lr: %.7f, loss: %.4f, loss_single: %.4f, loss_VTE: %.4f, p1: %.2f, p2: %.2f' % (
epoch, lr, loss, loss_single, loss_VTE, p1, p2))
if epoch % opt.large_decay_epoch == 0:
for param_group in optimizer_all.param_groups:
param_group['lr'] *= opt.lr_decay_large
lr_spatial *= opt.lr_decay_large
lr *= opt.lr_decay_large
lr_refine *= opt.lr_decay_large
else:
for param_group in optimizer_all.param_groups:
param_group['lr'] *= opt.lr_decay
lr_spatial *= opt.lr_decay
lr *= opt.lr_decay
lr_refine *= opt.lr_decay