forked from bnsreenu/python_for_microscopists
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path094_denoising_MRI.py
301 lines (217 loc) · 11.7 KB
/
094_denoising_MRI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
#!/usr/bin/env python
__author__ = "Sreenivas Bhattiprolu"
__license__ = "Feel free to copy, I appreciate if you acknowledge Python for Microscopists"
# https://youtu.be/ur6pi3L98kk
"""
Gaussian
Bilateral, Total variation filter, Wavelet denoising filter
Shift invariant wavelet
Anisotropic diffusion
NLM - Skimage
NLM - opencv
BM3D Block-matching and 3D filtering
Markov random field
The 3 top denoising algorithms for MRI denoising are
NLM, Bilateral, block-match and 3D filtering (BM3D)
Total variation (TV) also works great.
Bilateral is slow and it probably works fine except it takes too much
time to experiment with parameters.
"""
#Read DICOM and write pixels into tif
#Remember that DICOM can come with many tables including patient information
#We just need pixel info for image processing.
#https://pydicom.github.io/pydicom/dev/old/working_with_pixel_data.html
import matplotlib.pyplot as plt
import pydicom
dataset = pydicom.dcmread("images/MRI_images/CT_small.dcm")
img=dataset.pixel_array
plt.imshow(img, cmap=plt.cm.bone)
plt.imsave("images/MRI_images/dcm_to_tiff_converted.tif", img, cmap='gray')
##########################################################################
#Denoising filters
#####################################################################
#Gaussian
from skimage import img_as_float
from skimage.metrics import peak_signal_noise_ratio
from matplotlib import pyplot as plt
from skimage import io
from scipy import ndimage as nd
noisy_img = img_as_float(io.imread("images/MRI_images/MRI_noisy.tif"))
#Need to convert to float as we will be doing math on the array
#Also, most skimage functions need float numbers
ref_img = img_as_float(io.imread("images/MRI_images/MRI_clean.tif"))
gaussian_img = nd.gaussian_filter(noisy_img, sigma=5)
plt.imshow(gaussian_img, cmap='gray')
plt.imsave("images/MRI_images/Gaussian_smoothed.tif", gaussian_img, cmap='gray')
noise_psnr = peak_signal_noise_ratio(ref_img, noisy_img)
gaussian_cleaned_psnr = peak_signal_noise_ratio(ref_img, gaussian_img)
print("PSNR of input noisy image = ", noise_psnr)
print("PSNR of cleaned image = ", gaussian_cleaned_psnr)
#######################################################################
#Bilateral, TV and Wavelet
from skimage.restoration import (denoise_tv_chambolle, denoise_bilateral,
denoise_wavelet, estimate_sigma)
from skimage import img_as_float
noisy_img = img_as_float(io.imread("images/MRI_images/MRI_noisy.tif"))
sigma_est = estimate_sigma(noisy_img, multichannel=True, average_sigmas=True)
denoise_bilateral = denoise_bilateral(noisy_img, sigma_spatial=15,
multichannel=False)
noise_psnr = peak_signal_noise_ratio(ref_img, noisy_img)
bilateral_cleaned_psnr = peak_signal_noise_ratio(ref_img, denoise_bilateral)
print("PSNR of input noisy image = ", noise_psnr)
print("PSNR of cleaned image = ", bilateral_cleaned_psnr)
plt.imsave("images/MRI_images/bilateral_smoothed.tif", denoise_bilateral, cmap='gray')
###### TV ###############
denoise_TV = denoise_tv_chambolle(noisy_img, weight=0.3, multichannel=False)
noise_psnr = peak_signal_noise_ratio(ref_img, noisy_img)
TV_cleaned_psnr = peak_signal_noise_ratio(ref_img, denoise_TV)
print("PSNR of input noisy image = ", noise_psnr)
print("PSNR of cleaned image = ", TV_cleaned_psnr)
plt.imsave("images/MRI_images/TV_smoothed.tif", denoise_TV, cmap='gray')
####Wavelet #################
wavelet_smoothed = denoise_wavelet(noisy_img, multichannel=False,
method='BayesShrink', mode='soft',
rescale_sigma=True)
noise_psnr = peak_signal_noise_ratio(ref_img, noisy_img)
Wavelet_cleaned_psnr = peak_signal_noise_ratio(ref_img, wavelet_smoothed)
print("PSNR of input noisy image = ", noise_psnr)
print("PSNR of cleaned image = ", Wavelet_cleaned_psnr)
plt.imsave("images/MRI_images/wavelet_smoothed.tif", wavelet_smoothed, cmap='gray')
#####################
#Shift invariant wavelet denoising
#https://scikit-image.org/docs/dev/auto_examples/filters/plot_cycle_spinning.html
#Not sure if this is doing anything, check
import matplotlib.pyplot as plt
from skimage.restoration import denoise_wavelet, cycle_spin
from skimage import data, img_as_float
from skimage.util import random_noise
from skimage.metrics import peak_signal_noise_ratio
from skimage import io
noisy_img = img_as_float(io.imread("images/MRI_images/MRI_noisy.tif"))
ref_img = img_as_float(io.imread("images/MRI_images/MRI_clean.tif"))
denoise_kwargs = dict(multichannel=False, wavelet='db1', method='BayesShrink',
rescale_sigma=True)
all_psnr = []
max_shifts = 3 #0, 1, 3, 5
Shft_inv_wavelet = cycle_spin(noisy_img, func=denoise_wavelet, max_shifts = max_shifts,
func_kw=denoise_kwargs, multichannel=False)
noise_psnr = peak_signal_noise_ratio(ref_img, noisy_img)
shft_cleaned_psnr = peak_signal_noise_ratio(ref_img, Shft_inv_wavelet)
print("PSNR of input noisy image = ", noise_psnr)
print("PSNR of cleaned image = ", shft_cleaned_psnr)
plt.imsave("images/MRI_images/Shift_Inv_wavelet_smoothed.tif", Shft_inv_wavelet, cmap='gray')
##########################################################################
#Anisotropic Diffusion
import matplotlib.pyplot as plt
import cv2
from skimage import io
from medpy.filter.smoothing import anisotropic_diffusion
from skimage import img_as_float
from skimage.metrics import peak_signal_noise_ratio
#img = io.imread("MRI_images/MRI_noisy.tif", as_gray=True)
noisy_img = img_as_float(io.imread("images/MRI_images/MRI_noisy.tif", as_gray=True))
ref_img = img_as_float(io.imread("images/MRI_images/MRI_clean.tif"))
# niter= number of iterations
#kappa = Conduction coefficient (20 to 100)
#gamma = speed of diffusion (<=0.25)
#Option: Perona Malik equation 1 or 2. A value of 3 is for Turkey's biweight function
img_aniso_filtered = anisotropic_diffusion(noisy_img, niter=50, kappa=50, gamma=0.2, option=2)
noise_psnr = peak_signal_noise_ratio(ref_img, noisy_img)
anisotropic_cleaned_psnr = peak_signal_noise_ratio(ref_img, img_aniso_filtered)
print("PSNR of input noisy image = ", noise_psnr)
print("PSNR of cleaned image = ", anisotropic_cleaned_psnr)
plt.imshow(img_aniso_filtered, cmap='gray')
plt.imsave("images/MRI_images/anisotropic_denoised.tif", img_aniso_filtered, cmap='gray')
##########################################################################
#NLM from SKIMAGE
from skimage.restoration import denoise_nl_means, estimate_sigma
from skimage import img_as_ubyte, img_as_float
from matplotlib import pyplot as plt
from skimage import io
import numpy as np
from skimage.metrics import peak_signal_noise_ratio
noisy_img = img_as_float(io.imread("images/MRI_images/MRI_noisy.tif", as_gray=True))
ref_img = img_as_float(io.imread("images/MRI_images/MRI_clean.tif"))
sigma_est = np.mean(estimate_sigma(noisy_img, multichannel=False))
NLM_skimg_denoise_img = denoise_nl_means(noisy_img, h=1.15 * sigma_est, fast_mode=True,
patch_size=9, patch_distance=5, multichannel=False)
noise_psnr = peak_signal_noise_ratio(ref_img, noisy_img)
NLM_skimg_cleaned_psnr = peak_signal_noise_ratio(ref_img, NLM_skimg_denoise_img)
print("PSNR of input noisy image = ", noise_psnr)
print("PSNR of cleaned image = ", NLM_skimg_cleaned_psnr)
denoise_img_as_8byte = img_as_ubyte(NLM_skimg_denoise_img)
#plt.imshow(NLM_skimg_denoise_img)
#plt.imshow(denoise_img_as_8byte, cmap=plt.cm.gray, interpolation='nearest')
plt.imsave("images/MRI_images/NLM_skimage_denoised.tif", denoise_img_as_8byte, cmap='gray')
###########################################################################
#NLM opencv
# https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_photo/py_non_local_means/py_non_local_means.html
# cv2.fastNlMeansDenoising() - works with a single grayscale images
# cv2.fastNlMeansDenoisingColored() - works with a color image.
import numpy as np
from matplotlib import pyplot as plt
from skimage import img_as_ubyte, img_as_float
from matplotlib import pyplot as plt
from skimage import io
import numpy as np
from skimage.metrics import peak_signal_noise_ratio
noisy_img = io.imread("images/MRI_images/MRI_noisy.tif", as_gray=True) #Only 8 bit supported for CV2 NLM
ref_img = io.imread("images/MRI_images/MRI_clean.tif")
# fastNlMeansDenoising(InputArray src, OutputArray dst, float h=3, int templateWindowSize=7, int searchWindowSize=21 )
NLM_CV2_denoise_img = cv2.fastNlMeansDenoising(noisy_img, None, 3, 7, 21)
plt.imsave("images/MRI_images/NLM_CV2_denoised.tif", NLM_CV2_denoise_img, cmap='gray')
plt.imshow("images/MRI_images/NLM_CV2_denoised.tif", NLM_CV2_denoise_img, cmap='gray')
###########################################################################
#BM3D Block-matching and 3D filtering
#pip install bm3d
import matplotlib.pyplot as plt
from skimage import io, img_as_float
from skimage.metrics import peak_signal_noise_ratio
import bm3d
import numpy as np
noisy_img = img_as_float(io.imread("images/MRI_images/MRI_noisy.tif", as_gray=True))
ref_img = img_as_float(io.imread("images/MRI_images/MRI_clean.tif"))
BM3D_denoised_image = bm3d.bm3d(noisy_img, sigma_psd=0.2, stage_arg=bm3d.BM3DStages.ALL_STAGES)
#BM3D_denoised_image = bm3d.bm3d(noisy_img, sigma_psd=0.2, stage_arg=bm3d.BM3DStages.HARD_THRESHOLDING)
#Also try stage_arg=bm3d.BM3DStages.HARD_THRESHOLDING
noise_psnr = peak_signal_noise_ratio(ref_img, noisy_img)
BM3D_cleaned_psnr = peak_signal_noise_ratio(ref_img, BM3D_denoised_image)
print("PSNR of input noisy image = ", noise_psnr)
print("PSNR of cleaned image = ", BM3D_cleaned_psnr)
plt.imshow(BM3D_denoised_image, cmap='gray')
plt.imsave("images/MRI_images/BM3D_denoised.tif", BM3D_denoised_image, cmap='gray')
####################################################
#MRF
# Code from following github. It works but too slow and not as good as the above filters.
#https://github.com/ychemli/Image-denoising-with-MRF/blob/master/ICM_denoising.py
#Very slow... and not so great
#http://www.cs.toronto.edu/~fleet/courses/2503/fall11/Handouts/mrf.pdf
import cv2
# potential fonction corresponding to a gaussian markovian model (quadratic function)
def pot(fi, fj):
return float((fi-fj))**2
#ICM : Iterated conditional mode algorithme
def ICM(img, iter, beta):
NoisyIm = cv2.imread(img, 0)
height, width = NoisyIm.shape
sigma2 = 5
# beta is the regularization parameter
# iter is the Number of iterations : each new image is used as the new restored image
for iter in range(iter):
print("iteration {}\n".format(iter+1))
for i in range(height-1):
print("line {}/{} ok\n".format(i+1, height))
for j in range(width-1):
# We work in 4-connexity here
xmin = 0
min = float((NoisyIm[i][j]*NoisyIm[i][j]))/(2.0*sigma2) + beta*(pot(NoisyIm[i][j-1],0)+pot(NoisyIm[i][j+1],0)+pot(NoisyIm[i-1][j], 0)+pot(NoisyIm[i+1][j], 0))
#Every shade of gray is tested to find the a local minimum of the energie corresponding to a Gibbs distribution
for x in range(256):
proba = float(((NoisyIm[i][j]-x)*(NoisyIm[i][j]-x)))/(2.0*sigma2) + beta*(pot(NoisyIm[i][j-1],x) + pot(NoisyIm[i][j+1],x) + pot(NoisyIm[i-1][j], x) + pot(NoisyIm[i+1][j], x))
if(min>proba):
min = proba
xmin = x
NoisyIm [i][j] = xmin
cv2.imwrite("iter_" + str(iter+1) + "_denoised_" + img, NoisyIm)
if __name__ == '__main__':
ICM('images/MRI_images/BM3D_denoised.tif', 10, 1)