forked from amazon-science/tanl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
output_formats.py
1109 lines (915 loc) · 46.5 KB
/
output_formats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
import itertools
from abc import ABC, abstractmethod
from collections import defaultdict
from typing import Tuple, List, Dict
import numpy as np
from input_example import InputFeatures, EntityType, RelationType, Entity, Relation, Intent, InputExample, CorefDocument, Event, Argument
from utils import augment_sentence, get_span
OUTPUT_FORMATS = {}
def register_output_format(format_class):
OUTPUT_FORMATS[format_class.name] = format_class
return format_class
class BaseOutputFormat(ABC):
name = None
BEGIN_ENTITY_TOKEN = '['
END_ENTITY_TOKEN = ']'
SEPARATOR_TOKEN = '|'
RELATION_SEPARATOR_TOKEN = '='
@abstractmethod
def format_output(self, example: InputExample) -> str:
"""
Format output in augmented natural language.
"""
raise NotImplementedError
@abstractmethod
def run_inference(self, example: InputExample, output_sentence: str):
"""
Process an output sentence to extract whatever information the task asks for.
"""
raise NotImplementedError
def parse_output_sentence(self, example: InputExample, output_sentence: str) -> Tuple[list, bool]:
"""
Parse an output sentence in augmented language and extract inferred entities and tags.
Return a pair (predicted_entities, wrong_reconstruction), where:
- each element of predicted_entities is a tuple (entity_name, tags, start, end)
- entity_name (str) is the name as extracted from the output sentence
- tags is a list of tuples, obtained by |-splitting the part of the entity after the entity name
- this entity corresponds to the tokens example.tokens[start:end]
- note that the entity_name could differ from ' '.join(example.tokens[start:end]), if the model was not
able to exactly reproduce the entity name, or if alignment failed
- wrong_reconstruction (bool) says whether the output_sentence does not match example.tokens exactly
An example follows.
example.tokens:
['Tolkien', 'wrote', 'The', 'Lord', 'of', 'the', 'Rings']
output_sentence:
[ Tolkien | person ] wrote [ The Lord of the Rings | book | author = Tolkien ]
output predicted entities:
[
('Tolkien', [('person',)], 0, 1),
('The Lord of the Rings', [('book',), ('author', 'Tolkien')], 2, 7)
]
"""
output_tokens = []
unmatched_predicted_entities = []
# add spaces around special tokens, so that they are alone when we split
padded_output_sentence = output_sentence
for special_token in [
self.BEGIN_ENTITY_TOKEN, self.END_ENTITY_TOKEN,
self.SEPARATOR_TOKEN, self.RELATION_SEPARATOR_TOKEN,
]:
padded_output_sentence = padded_output_sentence.replace(special_token, ' ' + special_token + ' ')
entity_stack = [] # stack of the entities we are extracting from the output sentence
# this is a list of lists [start, state, entity_name_tokens, entity_other_tokens]
# where state is "name" (before the first | separator) or "other" (after the first | separator)
tokens = padded_output_sentence.split()
for token in tokens:
if len(token) == 0:
continue
elif self.BEGIN_ENTITY_TOKEN in token:
# begin entity
start = len(output_tokens)
entity_stack.append([start, "name", [], []])
elif self.END_ENTITY_TOKEN in token and len(entity_stack) > 0:
# end entity
start, state, entity_name_tokens, entity_other_tokens = entity_stack.pop()
entity_name = ' '.join(entity_name_tokens).strip()
end = len(output_tokens)
tags = []
# split entity_other_tokens by |
splits = [
list(y) for x, y in itertools.groupby(entity_other_tokens, lambda z: z == self.SEPARATOR_TOKEN)
if not x
]
if state == "other" and len(splits) > 0:
for x in splits:
tags.append(tuple(' '.join(x).split(' ' + self.RELATION_SEPARATOR_TOKEN + ' ')))
unmatched_predicted_entities.append((entity_name, tags, start, end))
else:
# a normal token
if len(entity_stack) > 0:
# inside some entities
if self.SEPARATOR_TOKEN in token:
x = entity_stack[-1]
if x[1] == "name":
# this token marks the end of name tokens for the current entity
x[1] = "other"
else:
# simply add this token to entity_other_tokens
x[3].append(token)
else:
is_name_token = True
for x in reversed(entity_stack):
# check state
if x[1] == "name":
# add this token to entity_name_tokens
x[2].append(token)
else:
# add this token to entity_other tokens and then stop going up in the tree
x[3].append(token)
is_name_token = False
break
if is_name_token:
output_tokens.append(token)
else:
# outside
output_tokens.append(token)
# check if we reconstructed the original sentence correctly, after removing all spaces
wrong_reconstruction = (''.join(output_tokens) != ''.join(example.tokens))
# now we align self.tokens with output_tokens (with dynamic programming)
cost = np.zeros((len(example.tokens) + 1, len(output_tokens) + 1)) # cost of alignment between tokens[:i]
# and output_tokens[:j]
best = np.zeros_like(cost, dtype=int) # best choice when aligning tokens[:i] and output_tokens[:j]
for i in range(len(example.tokens) + 1):
for j in range(len(output_tokens) + 1):
if i == 0 and j == 0:
continue
candidates = []
# match
if i > 0 and j > 0:
candidates.append(
((0 if example.tokens[i - 1] == output_tokens[j - 1] else 1) + cost[i - 1, j - 1], 1))
# skip in the first sequence
if i > 0:
candidates.append((1 + cost[i - 1, j], 2))
# skip in the second sequence
if j > 0:
candidates.append((1 + cost[i, j - 1], 3))
chosen_cost, chosen_option = min(candidates)
cost[i, j] = chosen_cost
best[i, j] = chosen_option
# reconstruct best alignment
matching = {}
i = len(example.tokens) - 1
j = len(output_tokens) - 1
while i >= 0 and j >= 0:
chosen_option = best[i + 1, j + 1]
if chosen_option == 1:
# match
matching[j] = i
i, j = i - 1, j - 1
elif chosen_option == 2:
# skip in the first sequence
i -= 1
else:
# skip in the second sequence
j -= 1
# update predicted entities with the positions in the original sentence
predicted_entities = []
for entity_name, entity_tags, start, end in unmatched_predicted_entities:
new_start = None # start in the original sequence
new_end = None # end in the original sequence
for j in range(start, end):
if j in matching:
if new_start is None:
new_start = matching[j]
new_end = matching[j]
if new_start is not None:
# predict entity
entity_tuple = (entity_name, entity_tags, new_start, new_end + 1)
predicted_entities.append(entity_tuple)
return predicted_entities, wrong_reconstruction
def parse_output_sentence_char(self, example_tokens: list[str], output_sentence: str, sentence_offset: int = 0) -> Tuple[list, bool, str]:
"""
Parse an output sentence in augmented language and extract inferred entities and tags.
Return a pair (predicted_entities, wrong_reconstruction), where:
- each element of predicted_entities is a tuple (entity_name, tags, start, end)
- entity_name (str) is the name as extracted from the output sentence
- tags is a list of tuples, obtained by |-splitting the part of the entity after the entity name
- this entity corresponds to the tokens example.tokens[start:end]
- note that the entity_name could differ from ' '.join(example.tokens[start:end]), if the model was not
able to exactly reproduce the entity name, or if alignment failed
- wrong_reconstruction (bool) says whether the output_sentence does not match example.tokens exactly
An example follows.
example.tokens:
['Tolkien', 'wrote', 'The', 'Lord', 'of', 'the', 'Rings']
output_sentence:
[ Tolkien | person ] wrote [ The Lord of the Rings | book | author = Tolkien ]
output predicted entities:
[
('Tolkien', [('person',)], 0, 1),
('The Lord of the Rings', [('book',), ('author', 'Tolkien')], 2, 7)
]
"""
output_tokens = []
unmatched_predicted_entities = []
entity_stack = [] # stack of the entities we are extracting from the output sentence
# this is a list of lists [start, state, entity_name_tokens, entity_other_tokens]
# where state is "name" (before the first | separator) or "other" (after the first | separator)
tokens = list(output_sentence)
for token in tokens:
if len(token) == 0:
continue
elif self.BEGIN_ENTITY_TOKEN in token:
# begin entity
start = len(output_tokens)
entity_stack.append([start, "name", [], []])
elif self.END_ENTITY_TOKEN in token and len(entity_stack) > 0:
# end entity
start, state, entity_name_tokens, entity_other_tokens = entity_stack.pop()
entity_name = ''.join(entity_name_tokens).strip()
end = len(output_tokens)
tags = []
# split entity_other_tokens by |
splits = [
list(y) for x, y in itertools.groupby(entity_other_tokens, lambda z: z == self.SEPARATOR_TOKEN)
if not x
]
if state == "other" and len(splits) > 0:
for x in splits:
tags.append(tuple(''.join(x).split(self.RELATION_SEPARATOR_TOKEN)))
unmatched_predicted_entities.append((entity_name, tags, start, end))
else:
# a normal token
if len(entity_stack) > 0:
# inside some entities
if self.SEPARATOR_TOKEN in token:
x = entity_stack[-1]
if x[1] == "name":
# this token marks the end of name tokens for the current entity
x[1] = "other"
else:
# simply add this token to entity_other_tokens
x[3].append(token)
else:
is_name_token = True
for x in reversed(entity_stack):
# check state
if x[1] == "name":
# add this token to entity_name_tokens
x[2].append(token)
else:
# add this token to entity_other tokens and then stop going up in the tree
x[3].append(token)
is_name_token = False
break
if is_name_token:
output_tokens.append(token)
else:
# outside
output_tokens.append(token)
# check if we reconstructed the original sentence correctly, after removing all spaces
wrong_reconstruction = (''.join(output_tokens) != ''.join(example_tokens))
reconstructed_sentence = ''.join(output_tokens)
# now we align self.tokens with output_tokens (with dynamic programming)
cost = np.zeros((len(example_tokens) + 1, len(output_tokens) + 1)) # cost of alignment between tokens[:i]
# and output_tokens[:j]
best = np.zeros_like(cost, dtype=int) # best choice when aligning tokens[:i] and output_tokens[:j]
for i in range(len(example_tokens) + 1):
for j in range(len(output_tokens) + 1):
if i == 0 and j == 0:
continue
candidates = []
# match
if i > 0 and j > 0:
candidates.append(
((0 if example_tokens[i - 1] == output_tokens[j - 1] else 1) + cost[i - 1, j - 1], 1))
# skip in the first sequence
if i > 0:
candidates.append((1 + cost[i - 1, j], 2))
# skip in the second sequence
if j > 0:
candidates.append((1 + cost[i, j - 1], 3))
chosen_cost, chosen_option = min(candidates)
cost[i, j] = chosen_cost
best[i, j] = chosen_option
# reconstruct best alignment
matching = {}
i = len(example_tokens) - 1
j = len(output_tokens) - 1
while i >= 0 and j >= 0:
chosen_option = best[i + 1, j + 1]
if chosen_option == 1:
# match
matching[j] = i
i, j = i - 1, j - 1
elif chosen_option == 2:
# skip in the first sequence
i -= 1
else:
# skip in the second sequence
j -= 1
# update predicted entities with the positions in the original sentence
predicted_entities = []
for entity_name, entity_tags, start, end in unmatched_predicted_entities:
new_start = None # start in the original sequence
new_end = None # end in the original sequence
for j in range(start, end):
if j in matching:
if new_start is None:
new_start = matching[j]
new_end = matching[j]
if new_start is not None:
# predict entity
entity_tuple = (entity_name, tuple(entity_tags), new_start + sentence_offset, new_end + 1 + sentence_offset)
predicted_entities.append(entity_tuple)
return predicted_entities, wrong_reconstruction, reconstructed_sentence
@register_output_format
class JointEROutputFormat(BaseOutputFormat):
"""
Output format for joint entity and relation extraction.
"""
name = 'joint_er'
def format_output(self, example: InputExample) -> str:
"""
Get output in augmented natural language, for example:
[ Tolkien | person | born in = here ] was born [ here | location ]
"""
# organize relations by head entity
relations_by_entity = {entity: [] for entity in example.entities}
for relation in example.relations:
relations_by_entity[relation.head].append((relation.type, relation.tail))
augmentations = []
for entity in example.entities:
tags = [(entity.type.natural,)]
for relation_type, tail in relations_by_entity[entity]:
tags.append((relation_type.natural, ' '.join(example.tokens[tail.start:tail.end])))
augmentations.append((
tags,
entity.start,
entity.end,
))
return augment_sentence(example.tokens, augmentations, self.BEGIN_ENTITY_TOKEN, self.SEPARATOR_TOKEN,
self.RELATION_SEPARATOR_TOKEN, self.END_ENTITY_TOKEN)
def run_inference(self, example: InputExample, output_sentence: str,
entity_types: Dict[str, EntityType] = None, relation_types: Dict[str, RelationType] = None) \
-> Tuple[set, set, bool, bool, bool, bool]:
"""
Process an output sentence to extract predicted entities and relations (among the given entity/relation types).
Return the predicted entities, predicted relations, and four booleans which describe if certain kinds of errors
occurred (wrong reconstruction of the sentence, label error, entity error, augmented language format error).
"""
label_error = False # whether the output sentence has at least one non-existing entity or relation type
entity_error = False # whether there is at least one relation pointing to a non-existing head entity
format_error = False # whether the augmented language format is invalid
if output_sentence.count(self.BEGIN_ENTITY_TOKEN) != output_sentence.count(self.END_ENTITY_TOKEN):
# the parentheses do not match
format_error = True
entity_types = set(entity_type.natural for entity_type in entity_types.values())
relation_types = set(relation_type.natural for relation_type in relation_types.values()) \
if relation_types is not None else {}
# parse output sentence
raw_predicted_entities, wrong_reconstruction = self.parse_output_sentence(example, output_sentence)
# update predicted entities with the positions in the original sentence
predicted_entities_by_name = defaultdict(list)
predicted_entities = set()
raw_predicted_relations = []
# process and filter entities
for entity_name, tags, start, end in raw_predicted_entities:
if len(tags) == 0 or len(tags[0]) > 1:
# we do not have a tag for the entity type
format_error = True
continue
entity_type = tags[0][0]
if entity_type in entity_types:
entity_tuple = (entity_type, start, end)
predicted_entities.add(entity_tuple)
predicted_entities_by_name[entity_name].append(entity_tuple)
# process tags to get relations
for tag in tags[1:]:
if len(tag) == 2:
relation_type, related_entity = tag
if relation_type in relation_types:
raw_predicted_relations.append((relation_type, entity_tuple, related_entity))
else:
label_error = True
else:
# the relation tag has the wrong length
format_error = True
else:
# the predicted entity type does not exist
label_error = True
predicted_relations = set()
for relation_type, entity_tuple, related_entity in raw_predicted_relations:
if related_entity in predicted_entities_by_name:
# look for the closest instance of the related entity
# (there could be many of them)
_, head_start, head_end = entity_tuple
candidates = sorted(
predicted_entities_by_name[related_entity],
key=lambda x:
min(abs(x[1] - head_end), abs(head_start - x[2]))
)
for candidate in candidates:
relation = (relation_type, entity_tuple, candidate)
if relation not in predicted_relations:
predicted_relations.add(relation)
break
else:
# cannot find the related entity in the sentence
entity_error = True
return predicted_entities, predicted_relations, wrong_reconstruction, label_error, entity_error, format_error
@register_output_format
class JointICSLFormat(JointEROutputFormat):
"""
Output format for joint intent classification and slot labeling.
"""
name = 'joint_icsl'
BEGIN_INTENT_TOKEN = "(("
END_INTENT_TOKEN = "))"
def format_output(self, example: InputExample) -> str:
"""
Get output in augmented natural language.
"""
augmentations = []
for entity in example.entities:
tags = [(entity.type.natural,)]
augmentations.append((
tags,
entity.start,
entity.end,
))
augmented_sentence = augment_sentence(example.tokens, augmentations, self.BEGIN_ENTITY_TOKEN,
self.SEPARATOR_TOKEN,
self.RELATION_SEPARATOR_TOKEN, self.END_ENTITY_TOKEN)
return (f"(( {example.intent.natural} )) " + augmented_sentence)
def run_inference(self, example: InputExample, output_sentence: str,
entity_types: Dict[str, EntityType] = None) -> Tuple[str, set]:
entity_types = set(entity_type.natural for entity_type in entity_types.values())
# parse output sentence
# get intent
for special_token in [self.BEGIN_INTENT_TOKEN, self.END_INTENT_TOKEN]:
output_sentence.replace(special_token, ' ' + special_token + ' ')
output_sentence_tokens = output_sentence.split()
if self.BEGIN_INTENT_TOKEN in output_sentence_tokens and \
self.END_INTENT_TOKEN in output_sentence_tokens:
intent = output_sentence.split(self.BEGIN_INTENT_TOKEN)[1].split(self.END_INTENT_TOKEN)[0].strip()
output_sentence = output_sentence.split(self.END_INTENT_TOKEN)[1] # remove intent from sentence
label_error = False # whether the output sentence has at least one non-existing entity or relation type
format_error = False # whether the augmented language format is invalid
if output_sentence.count(self.BEGIN_ENTITY_TOKEN) != output_sentence.count(self.END_ENTITY_TOKEN):
# the parentheses do not match
format_error = True
# parse output sentence
raw_predicted_entities, wrong_reconstruction = self.parse_output_sentence(example, output_sentence)
# update predicted entities with the positions in the original sentence
predicted_entities_by_name = defaultdict(list)
predicted_entities = set()
# process and filter entities
for entity_name, tags, start, end in raw_predicted_entities:
if len(tags) == 0 or len(tags[0]) > 1:
# we do not have a tag for the entity type
format_error = True
continue
entity_type = tags[0][0]
if entity_type in entity_types:
entity_tuple = (entity_type, start, end)
predicted_entities.add(entity_tuple)
else:
label_error = True
return intent, predicted_entities, wrong_reconstruction, label_error, format_error
@register_output_format
class EventOutputFormat(JointEROutputFormat):
"""
Output format for event extraction, where an input example contains exactly one trigger.
"""
name = 'ace2005_event'
def format_output(self, example: InputExample) -> str:
"""
Get output in augmented natural language, similarly to JointEROutputFormat (but we also consider triggers).
"""
# organize relations by head entity
relations_by_entity = {entity: [] for entity in example.entities + example.triggers}
for relation in example.relations:
relations_by_entity[relation.head].append((relation.type, relation.tail))
augmentations = []
for entity in (example.entities + example.triggers):
if not relations_by_entity[entity]:
continue
tags = [(entity.type.natural,)]
for relation_type, tail in relations_by_entity[entity]:
tags.append((relation_type.natural, ' '.join(example.tokens[tail.start:tail.end])))
augmentations.append((
tags,
entity.start,
entity.end,
))
return augment_sentence(example.tokens, augmentations, self.BEGIN_ENTITY_TOKEN, self.SEPARATOR_TOKEN,
self.RELATION_SEPARATOR_TOKEN, self.END_ENTITY_TOKEN)
def run_inference(self, example: InputExample, output_sentence: str,
entity_types: Dict[str, EntityType] = None, relation_types: Dict[str, RelationType] = None) \
-> Tuple[set, set, bool]:
"""
Process an output sentence to extract arguments, given as entities and relations.
"""
entity_types = set(entity_type.natural for entity_type in entity_types.values())
relation_types = set(relation_type.natural for relation_type in relation_types.values()) \
if relation_types is not None else {}
triggers = example.triggers
assert len(triggers) <= 1
if len(triggers) == 0:
# we do not have triggers
return set(), set(), False
trigger = triggers[0]
# parse output sentence
raw_predicted_entities, wrong_reconstruction = self.parse_output_sentence(example, output_sentence)
# update predicted entities with the positions in the original sentence
predicted_entities = set()
predicted_relations = set()
# process and filter entities
for entity_name, tags, start, end in raw_predicted_entities:
if len(tags) == 0 or len(tags[0]) > 1:
# we do not have a tag for the entity type
continue
entity_type = tags[0][0]
if entity_type in entity_types:
entity_tuple = (entity_type, start, end)
predicted_entities.add(entity_tuple)
# process tags to get relations
for tag in tags[1:]:
if len(tag) == 2:
relation_type, related_entity = tag
if relation_type in relation_types:
predicted_relations.add(
(relation_type, entity_tuple, (trigger.type.natural, trigger.start, trigger.end))
)
return predicted_entities, predicted_relations, wrong_reconstruction
@register_output_format
class CorefOutputFormat(BaseOutputFormat):
"""
Output format for coreference resolution.
"""
name = 'coref'
def format_output(self, example: InputExample) -> str:
"""
Get output in augmented natural language, for example:
Tolkien's epic novel [ The Lord of the Rings ] was published in 1954-1955, years after the
[ book | The Lord of the Rings ] was completed.
"""
augmentations = []
for group in example.groups:
previous_entity = None
for entity in group:
augmentation = (
[(' '.join(example.tokens[previous_entity.start:previous_entity.end]),)]
if previous_entity is not None else [],
entity.start,
entity.end,
)
augmentations.append(augmentation)
previous_entity = entity
return augment_sentence(example.tokens, augmentations, self.BEGIN_ENTITY_TOKEN, self.SEPARATOR_TOKEN,
self.RELATION_SEPARATOR_TOKEN, self.END_ENTITY_TOKEN)
def run_inference(self, example: InputExample, output_sentence: str) \
-> List[Tuple[Tuple[int, int], Tuple[int, int]]]:
"""
Process an output sentence to extract coreference relations.
Return a list of ((start, end), parent) where (start, end) denote an entity span, and parent is either None
or another (previous) entity span.
"""
raw_annotations, wrong_reconstruction = self.parse_output_sentence(example, output_sentence)
res = []
previous_entities = {}
for entity, tags, start, end in raw_annotations:
entity_span = (start, end)
if len(tags) > 0 and tags[0][0] in previous_entities:
previous_entity = tags[0][0]
res.append((entity_span, previous_entities[previous_entity]))
else:
# no previous entity found
res.append((entity_span, None))
# record this entity
previous_entities[entity] = entity_span
return res
@register_output_format
class RelationClassificationOutputFormat(BaseOutputFormat):
"""
Output format for relation classification.
"""
name = 'rel_output'
def format_output(self, example: InputExample) -> str:
en1_span = [example.entities[0].start, example.entities[0].end]
en2_span = [example.entities[1].start, example.entities[1].end]
words = example.tokens
s = f"relationship between {self.BEGIN_ENTITY_TOKEN} {get_span(words, en1_span)} {self.END_ENTITY_TOKEN} and " \
f"{self.BEGIN_ENTITY_TOKEN} {get_span(words, en2_span)} {self.END_ENTITY_TOKEN} " \
f"{self.RELATION_SEPARATOR_TOKEN} {example.relations[0].type.natural}"
return s.strip()
def run_inference(self, example: InputExample, output_sentence: str,
entity_types: Dict[str, EntityType] = None, relation_types: Dict[str, RelationType] = None) \
-> Tuple[set, set]:
"""
Process an output sentence to extract the predicted relation.
Return an empty list of entities and a single relation, so that it is compatible with joint entity-relation
extraction datasets.
"""
predicted_relation = output_sentence.split(self.RELATION_SEPARATOR_TOKEN)[-1].strip()
predicted_entities = set() # leave this empty as we only predict the relation
predicted_relations = {(
predicted_relation,
example.relations[0].head.to_tuple() if example.relations[0].head else None,
example.relations[0].tail.to_tuple() if example.relations[0].tail else None,
)}
return predicted_entities, predicted_relations
@register_output_format
class MultiWozOutputFormat(BaseOutputFormat):
"""
Output format for the MultiWoz DST dataset.
"""
name = 'multi_woz'
none_slot_value = 'not given'
domain_ontology = {
'hotel': [
'price range',
'type',
'parking',
'book stay',
'book day',
'book people',
'area',
'stars',
'internet',
'name'
],
'train': [
'destination',
'day',
'departure',
'arrive by',
'book people',
'leave at'
],
'attraction': ['type', 'area', 'name'],
'restaurant': [
'book people',
'book day',
'book time',
'food',
'price range',
'name',
'area'
],
'taxi': ['leave at', 'destination', 'departure', 'arrive by'],
'bus': ['people', 'leave at', 'destination', 'day', 'arrive by', 'departure'],
'hospital': ['department']
}
def format_output(self, example: InputExample) -> str:
"""
Get output in augmented natural language, for example:
[belief] hotel price range cheap , hotel type hotel , duration two [belief]
"""
turn_belief = example.belief_state
domain_to_slots = defaultdict(dict)
for label in turn_belief:
domain, slot, value = label.split("-")
domain_to_slots[domain][slot] = value
# add slots that are not given
for domain, slot_dict in domain_to_slots.items():
for slot in self.domain_ontology[domain]:
if slot not in slot_dict:
slot_dict[slot] = self.none_slot_value
output_list = []
for domain, slot_dict in sorted(domain_to_slots.items(), key=lambda p: p[0]):
output_list += [
f"{domain} {slot} {value}" for slot, value in sorted(slot_dict.items(), key=lambda p: p[0])
]
output = " , ".join(output_list)
output = f"[belief] {output} [belief]"
return output
def run_inference(self, example: InputExample, output_sentence: str):
"""
Process an output sentence to extract the predicted belief.
"""
start = output_sentence.find("[belief]")
end = output_sentence.rfind("[belief]")
label_span = output_sentence[start + len("[belief]"):end]
belief_set = set([
slot_value.strip() for slot_value in label_span.split(",")
if self.none_slot_value not in slot_value
])
return belief_set
@register_output_format
class BigBioOutputFormat(BaseOutputFormat):
name = 'bigbio'
def format_output(self, example: InputExample) -> str:
"""
Get output in augmented natural language, for example:
[belief] hotel price range cheap , hotel type hotel , duration two [belief]
augmentations = [([(type,), (tail.text,role), (...) ], #, #), (...)]
"""
augmentations = []
#for entity in example.entities:
# augmentations.append(([(entity.type,)], entity.start, entity.end))
for event in example.events:
arguments = [(''.join(event.type),)]
for argument in event.arguments:
entity_arg = next((e for e in example.entities if e.id == argument.ref_id), None)
if not entity_arg:
entity_arg = next((e for e in example.events if e.id == argument.ref_id), None)
if entity_arg:
arguments.append((''.join(example.tokens[entity_arg.start:entity_arg.end]), argument.role))
else:
arguments = []
continue
if arguments:
augmentations.append((arguments, event.start, event.end))
return augment_sentence(example.tokens,
augmentations,
self.BEGIN_ENTITY_TOKEN,
self.SEPARATOR_TOKEN,
self.RELATION_SEPARATOR_TOKEN,
self.END_ENTITY_TOKEN,)
def get_all_events(self, example: InputExample, output_sentence: str, event_types: list[str] = None,
entity_offset: int=None, sentence_offset: int=None):
predicted_events, wrong_reconstruction, reconstructed_sentence = self.parse_output_sentence_char(example.tokens, output_sentence, sentence_offset)
output_events = []
output_lines = []
format_error = False
tag_len_error = False
argument_error = False
type_error = False
high_order_error = False
offset = 0
trigger_offset = 0
found_entities = []
for predicted_event in list(set(predicted_events)):
event_name, tags, start, end = predicted_event
if len(tags) == 0 or len(tags[0]) > 1:
# we do not have a tag for the entity type
format_error = True
continue
if tags[0][0].strip() in event_types:
#create an event for every found event in output string
offset += 1
if f'T{entity_offset + trigger_offset}\t{tags[0][0]} {start} {end}\t{event_name}\n' not in output_lines:
trigger_offset += 1
output_lines.append(f'T{entity_offset + trigger_offset}\t{tags[0][0]} {start} {end}\t{event_name}\n')
output_events.append(Event(
id=f'E{entity_offset + offset}',
type=tags[0][0],
text=event_name,
start=start,
end=end,
arguments=tags[1:],
trigger_id=f'T{entity_offset + trigger_offset}'
))
else:
type_error = True
continue
#find all arguments
for guid, event in enumerate(output_events):
arguments = []
string_args = ""
for tag in event.arguments:
if len(tag) == 2:
tag_name, tag_type = tag
#check if the argument is an event
argument = [e for e in output_events if e.text.strip() == tag_name.strip() and e.id != event.id]
if not argument:
argument = [e for e in output_events if "".join(example.tokens[e.start - sentence_offset:e.end - sentence_offset]).strip() == tag_name.strip() and e.id != event.id]
if argument:
if len(argument) == 1:
arg_event = argument[0]
string_args += " " + tag_type + ':' + arg_event.id
arguments.append(Argument(role=tag_type,
ref_id=arg_event.id
))
else:
min_event = min(argument, key=lambda x: min(filter(lambda i: i > 0, [int(x.start) - event.end, event.start - int(x.end)]), default=float("inf")))
string_args += " " + tag_type + ':' + min_event.id
arguments.append(Argument(role=tag_type,
ref_id=min_event.id
))
else:
#check if the argument is an entity
argument = [e for e in example.entities if "".join(example.tokens[e.start:e.end]).strip() == tag_name.strip()]
'''
new_arg_finder = [e for e in example.events if
event.type == e.type and
event.start - sentence_offset == e.start and
event.end - sentence_offset == e.end and
event.text == "".join(e.text)]
for eventing in new_arg_finder:
for arg in eventing.arguments:
if arg.role == tag_type:
new_arg = [a for a in example.entities if arg.ref_id == a.id][0]
if new_arg:
if ''.join(example.tokens[new_arg.start:new_arg.end]) == tag_name:
argument = [new_arg]
found_entities.append(f'T{entity_offset + trigger_offset}\t{new_arg.type} {new_arg.start} {new_arg.end}\t{example.tokens[new_arg.start:new_arg.end]}\n')
continue
'''
if argument:
#find the closest entity to the corresponding event
min_event = min(argument, key=lambda x: min(filter(lambda i: i > 0, [int(x.start) - event.end, event.start - int(x.end)]), default=float("inf")))
if min_event.type == 'Entity':
trigger_offset += 1
output_lines.append(
f'T{entity_offset + trigger_offset}\t{min_event.type} {min_event.start} {min_event.end}\t{example.tokens[min_event.start:min_event.end]}\n')
string_args += " " + tag_type + ':' + f'T{entity_offset + trigger_offset}'
else:
string_args += " " + tag_type + ':' + min_event.id.split('_')[-1]
arguments.append(Argument(role=tag_type,
ref_id=min_event.id.split('_')[-1]
))
else:
high_val_error = [e for e in example.events if "".join(example.tokens[e.start:e.end]).strip() == tag_name.strip()]
string_args += " " + tag_type + ':' + 'T1'
arguments.append(Argument(role=tag_type,
ref_id='T1'
))
if high_val_error:
high_order_error = True
argument_error = True
else:
tag_len_error = True
event.arguments = arguments