-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
188 lines (158 loc) · 9.05 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#!/usr/bin/python
# -*- coding: utf8 -*-
"""
Main function of MultiGraphGAN framework
for jointly predicting multiple target brain graphs from a single source graph.
Details can be found in:
(1) the original paper https://link.springer.com/
Alaa Bessadok, Mohamed Ali Mahjoub, and Islem Rekik. "Topology-Aware Generative Adversarial Network for Joint Prediction of
Multiple Brain Graphs from a Single Brain Graph", MICCAI 2020, Lima, Peru.
(2) the youtube channel of BASIRA Lab: https://www.youtube.com/watch?v=OJOtLy9Xd34
---------------------------------------------------------------------
This file contains the implementation of two main steps of our MultiGraphGAN framework:
(1) source graphs embedding and clustering, and
(2) cluster-specific multi-target graph prediction.
MultiGraphGAN(src_loader, tgt_loaders, nb_clusters, opts)
Inputs:
src_loader: a PyTorch dataloader returning elements from source dataset batch by batch
tgt_loaders: a PyTorch dataloader returning elements from target dataset batch by batch
nb_clusters: number of clusters used to cluster the source graph embeddings
opts: a python object (parser) storing all arguments needed to run the code such as hyper-parameters
Output:
model: our MultiGraphGAN model
To evaluate our framework we used 90% of the dataset as training set and 10% for testing.
Sample use for training:
model = MultiGraphGAN(src_loader, tgt_loaders, opts.nb_clusters, opts)
model.train()
Sample use for testing:
model = MultiGraphGAN(src_loader, tgt_loaders, opts.nb_clusters, opts)
predicted_target_graphs, source_graphs = model.test()
Output:
predicted_target_graphs : a list of size num_domains-1 where num_domains is the number of source and target domains.
Each element is an (n × f) matrix stacking the predicted target feature graphs f of n testing subjects
source_graphs : a matrix of size (n × f) stacking the source feature graphs f of n testing subjects
---------------------------------------------------------------------
Copyright 2020 Alaa Bessadok, Sousse University.
Please cite the above paper if you use this code.
All rights reserved.
"""
import argparse
import random
import yaml
import numpy as np
from torch.backends import cudnn
from prediction import MultiGraphGAN
from data_loader import *
parser = argparse.ArgumentParser()
# initialisation
# Basic opts.
parser.add_argument('--num_domains', type=int, default=6, help='how many domains(including source domain)')
parser.add_argument('--mode', type=str, default='train', choices=['train', 'test'])
parser.add_argument('--log_dir', type=str, default='logs/')
parser.add_argument('--checkpoint_dir', type=str, default='models/')
parser.add_argument('--sample_dir', type=str, default='samples/')
parser.add_argument('--result_dir', type=str, default='results/')
parser.add_argument('--result_root', type=str, default='result_MultiGraphGAN/')
# GCN model opts
parser.add_argument('--hidden1', type=int, default=32)
parser.add_argument('--hidden2', type=int, default=16)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--in_feature', type=int, default=595)
# Discriminator model opts.
parser.add_argument('--cls_loss', type=str, default='BCE', choices=['LS','BCE'], help='least square loss or binary cross entropy loss')
parser.add_argument('--lambda_cls', type=float, default=1, help='hyper-parameter for domain classification loss')
parser.add_argument('--Lf', type=float, default=5, help='a constant with respect to the inter-domain constraint')
parser.add_argument('--lambda_reg', type=float, default=0.1, help='a constant with respect to the gradient penalty')
# Generator model opts.
parser.add_argument('--lambda_idt', type=float, default=10, help='hyper-parameter for identity loss')
parser.add_argument('--lambda_info', type=float, default=1, help='hype-rparameter for information maximazation loss')
parser.add_argument('--lambda_topology', type=float, default=0.1, help='hyper-parameter for topological constraint')
parser.add_argument('--lambda_rec', type=float, default=0.01, help='hyper-parameter for graph reconstruction loss')
parser.add_argument('--nb_clusters', type=int, default=2, help='number of clusters for MKML clustering')
# Training opts.
parser.add_argument('--batch_size', type=int, default=70, help='mini-batch size')
parser.add_argument('--num_iters', type=int, default=10, help='number of total iterations for training D')
parser.add_argument('--g_lr', type=float, default=0.0001, help='learning rate for G')
parser.add_argument('--d_lr', type=float, default=0.0001, help='learning rate for D')
parser.add_argument('--n_critic', type=int, default=5, help='number of D updates per each G update')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for Adam optimizer')
parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for Adam optimizer')
parser.add_argument('--resume_iters', type=int, default=None, help='resume training from this step')
parser.add_argument('--num_workers', type=int, default=1, help='num_workers to load data.')
parser.add_argument('--log_step', type=int, default=5)
parser.add_argument('--sample_step', type=int, default=5)
parser.add_argument('--model_save_step', type=int, default=10)
# Test opts.
parser.add_argument('--test_iters', type=int, default=10, help='test model from this step')
opts = parser.parse_args()
opts.log_dir = os.path.join(opts.result_root, opts.log_dir)
opts.checkpoint_dir = os.path.join(opts.result_root, opts.checkpoint_dir)
opts.sample_dir = os.path.join(opts.result_root, opts.sample_dir)
opts.result_dir = os.path.join(opts.result_root, opts.result_dir)
if __name__ == '__main__':
import pandas as pd
# For fast training.
cudnn.benchmark = True
if opts.mode == 'train':
"""
Training MultiGraphGAN
"""
# Create directories if not exist.
create_dirs_if_not_exist([opts.log_dir, opts.checkpoint_dir, opts.sample_dir, opts.result_dir])
# log opts.
with open(os.path.join(opts.result_root, 'opts.yaml'), 'w') as f:
f.write(yaml.dump(vars(opts)))
# Simulate graph data for easy test the code
source_target_domains = []
for i in range(opts.num_domains):
source_target_domains.append(np.random.normal(random.random(), random.random(), (280,595)))
# Choose the source domain to be translated
src_domain = 0
# Load source and target TRAIN datasets
tgt_loaders = []
for domain in range(0, opts.num_domains):
if domain == src_domain:
source_feature = source_target_domains[domain]
src_loader = get_loader(source_feature, opts.batch_size, opts.num_workers)
else:
target_feature = source_target_domains[domain]
tgt_loader = get_loader(target_feature, opts.batch_size, opts.num_workers)
tgt_loaders.append(tgt_loader)
# Train MultiGraphGAN
model = MultiGraphGAN(src_loader, tgt_loaders, opts.nb_clusters, opts)
model.train()
elif opts.mode == 'test':
"""
Testing MultiGraphGAN
"""
# Create directories if not exist.
create_dirs_if_not_exist([opts.result_dir])
# Simulate graph data for easy test the code
source_target_domains = []
for i in range(opts.num_domains):
source_target_domains.append(np.random.normal(random.random(), random.random(), (30,595)))
# Choose the source domain to be translated
src_domain = 0
# Load source and target TEST datasets
tgt_loaders = []
for domain in range(0, opts.num_domains):
if domain == src_domain:
source_feature = source_target_domains[domain]
src_loader = get_loader(source_feature, opts.batch_size, opts.num_workers)
else:
target_feature = source_target_domains[domain]
tgt_loader = get_loader(target_feature, opts.batch_size, opts.num_workers)
tgt_loaders.append(tgt_loader)
# Test MultiGraphGAN
model = MultiGraphGAN(src_loader, tgt_loaders, opts.nb_clusters, opts)
predicted_target_graphs, source_graphs = model.test()
# Save data into csv files
print("saving source graphs into csv file...")
f = source_graphs.cpu().numpy()
dataframe = pd.DataFrame(data=f.astype(float))
dataframe.to_csv('source_graphs.csv', sep=' ', header=True, float_format='%.6f', index=False)
print("saving predicted target graphs into csv files...")
for idx in range(len(predicted_target_graphs)):
f = predicted_target_graphs[idx].numpy()
dataframe = pd.DataFrame(data=f.astype(float))
dataframe.to_csv('predicted_graphs_%d.csv'%(idx+1), sep=' ', header=True, float_format='%.6f', index=False)