-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlosses.py
executable file
·67 lines (50 loc) · 1.8 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os.path as osp
import pickle
from preprocess import*
from scipy.linalg import sqrtm
import numpy
from centrality import *
import torch
from torch.nn import Sequential, Linear, ReLU, Sigmoid, Tanh, Dropout, Upsample
import torch.nn.functional as F
import torch.nn as nn
from torch_geometric.nn import NNConv, BatchNorm
import argparse
from scipy.stats import wasserstein_distance
from torch.distributions import normal, kl
if torch.cuda.is_available():
device = torch.device("cuda")
print("running on GPU")
else:
device = torch.device("cpu")
print("running on CPU")
l1_loss = torch.nn.L1Loss()
adversarial_loss = torch.nn.BCELoss()
adversarial_loss.to(device)
l1_loss.to(device)
def pearson_coor(input, target):
vx = input - torch.mean(input)
vy = target - torch.mean(target)
cost = torch.sum(vx * vy) / (torch.sqrt(torch.sum(vx ** 2)) * torch.sqrt(torch.sum(vy ** 2)))
return cost
def GT_loss(target, predicted):
# l1_loss
loss_pix2pix = l1_loss(target, predicted)
# topological_loss
target_n = target.detach().cpu().clone().numpy()
predicted_n = predicted.detach().cpu().clone().numpy()
torch.cuda.empty_cache()
target_t = eigen_centrality(target_n)
real_topology = torch.tensor(target_t)
predicted_t = eigen_centrality(predicted_n)
fake_topology = torch.tensor(predicted_t)
topo_loss = l1_loss(fake_topology, real_topology)
pc_loss = pearson_coor(target, predicted).to(device)
torch.cuda.empty_cache()
G_loss = loss_pix2pix + (1 - pc_loss) + topo_loss
return G_loss
def Alignment_loss(target, predicted):
# l_loss1 = torch.abs(nn.KLDivLoss()(F.softmax(zt1), F.softmax(z_s1.t())))
kl_loss = torch.abs(F.kl_div(F.softmax(target), F.softmax(predicted), None, None, 'sum'))
kl_loss = (1/350) * kl_loss
return kl_loss