-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
307 lines (236 loc) · 12.3 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#include "pch.h"
#include <gtsam/slam/SmartProjectionPoseFactor.h>
#include <fstream>
#include "utils.hpp"
constexpr size_t WIDTH = 1920;
constexpr size_t HEIGHT = 1080;
// Cube
//auto K = std::make_shared<gtsam::Cal3_S2>(39.6, WIDTH, HEIGHT);
// Caterpillar
//auto K = std::make_shared<gtsam::Cal3_S2>(WIDTH * 7 / 10, WIDTH * 7 / 10, 0, WIDTH / 2, HEIGHT / 2);
// Dino Ring
auto K = std::make_shared<gtsam::Cal3_S2>(3310.4, 3325.5, 0, 316.73, 200.55);
// Temple Ring
//auto K = std::make_shared<gtsam::Cal3_S2>(1520.4, 1525.9, 0, 302.32, 246.87);
// CSGO
//auto K = std::make_shared<gtsam::Cal3_S2>(40, WIDTH, HEIGHT);
constexpr float RATIO_THRESHOLD = 0.6f;
constexpr size_t IMAGE_COUNT = 15;
const std::string DATASET = "dinoRing";
namespace fs = std::filesystem;
using gtsam::Matrix3;
using gtsam::Matrix4;
using gtsam::Point2;
using gtsam::Point3;
using gtsam::Pose3;
using gtsam::Rot3;
using gtsam::Vector;
using gtsam::Vector3;
using SmartFactor = gtsam::SmartProjectionPoseFactor<gtsam::Cal3_S2>;
struct Image {
cv::Mat mat;
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
};
using img_idx_t = size_t;
using feature_idx_t = size_t;
using unique_feature_idx_t = size_t;
struct FeatureComponent {
img_idx_t imageIndex;
feature_idx_t featureIndex;
auto operator<=>(FeatureComponent const&) const = default;
};
struct FeatureComponentHash {
[[nodiscard]] size_t operator()(FeatureComponent const& component) const {
return std::hash<img_idx_t>{}(component.imageIndex) ^ std::hash<feature_idx_t>{}(component.featureIndex);
}
};
struct ImageWithUniqueFeature {
FeatureComponent component;
cv::KeyPoint keypoint;
auto operator==(ImageWithUniqueFeature const& other) const {
return component.imageIndex == other.component.imageIndex;
}
};
struct ImageWithUniqueFeatureHash {
[[nodiscard]] size_t operator()(ImageWithUniqueFeature const& image) const {
return std::hash<img_idx_t>{}(image.component.imageIndex);
}
};
using FeatureGraph = std::unordered_map<FeatureComponent, FeatureComponent, FeatureComponentHash>;
[[nodiscard]] FeatureComponent& findRoot(FeatureGraph& graph, FeatureComponent const& component) {// NOLINT(misc-no-recursion)
auto it = graph.find(component);
if (it == graph.end()) return graph[component] = component;
auto& [_, parent] = *it;
return parent == component ? parent : findRoot(graph, parent);
}
void unionComponents(FeatureGraph& graph, FeatureComponent const& a, FeatureComponent const& b) {
FeatureComponent& rootA = findRoot(graph, a);
FeatureComponent& rootB = findRoot(graph, b);
if (rootA == rootB) return;
graph[rootA] = rootB;
}
auto loadImages(fs::path const& imageDirectoryPath) {
std::cout << "Loading images from " << imageDirectoryPath.stem() << std::endl;
auto imagePaths = fs::directory_iterator(imageDirectoryPath) | collect<std::vector<fs::directory_entry>>();
std::ranges::sort(imagePaths, [](fs::directory_entry const& a, fs::directory_entry const& b) {
return a.path().stem().string() < b.path().stem().string();
});
imagePaths.resize(IMAGE_COUNT);
auto images = imagePaths | std::views::transform([](fs::directory_entry const& imagePath) {
std::cout << "\tLoading " << imagePath.path() << std::endl;
cv::Mat mat = cv::imread(imagePath.path(), cv::IMREAD_COLOR);
cv::Mat descriptors;
std::vector<cv::KeyPoint> features;
cv::Ptr<cv::SIFT> descriptorExtractor = cv::SIFT::create();
descriptorExtractor->detectAndCompute(mat, cv::noArray(), features, descriptors);
return Image{mat, features, descriptors};
}) |
collect<std::vector<Image>>();
return images;
}
int main() {
auto imageDirectoryPath = fs::current_path() / "data" / DATASET / "images";
// Load images and calculate features
std::vector<Image> images = loadImages(imageDirectoryPath);
// Create graph of connections between features across multiple images
FeatureGraph featureGraph;
for (size_t img1 = 0; img1 < images.size(); ++img1) {
for (size_t img2 = img1 + 1; img2 < images.size(); ++img2) {
using BestMatches = std::vector<cv::DMatch>;
std::vector<BestMatches> matches;
cv::BFMatcher matcher{cv::NORM_L2};
matcher.knnMatch(images[img1].descriptors, images[img2].descriptors, matches, 2);
BestMatches goodMatches;
for (BestMatches const& bestMatch: matches) {
assert(bestMatch.size() == 2);
cv::DMatch const &firstBest = bestMatch[0], &secondBest = bestMatch[1];
double ratio = firstBest.distance / secondBest.distance;
if (ratio < RATIO_THRESHOLD) {
unionComponents(featureGraph, FeatureComponent(img1, firstBest.queryIdx), FeatureComponent(img2, firstBest.trainIdx));
goodMatches.push_back(firstBest);
}
}
}
}
using ImagesWithUniqueFeature = std::unordered_set<ImageWithUniqueFeature, ImageWithUniqueFeatureHash>;
std::unordered_map<FeatureComponent, ImagesWithUniqueFeature, FeatureComponentHash> uniqueComponents;
for (auto const& [component, _]: featureGraph) {
FeatureComponent const& root = findRoot(featureGraph, component);
uniqueComponents[root].emplace(component, images[component.imageIndex].keypoints[component.featureIndex]);
}
auto uniqueFeatures = uniqueComponents | std::views::values | collect<std::vector<ImagesWithUniqueFeature>>();
std::printf("Unique features: %zu\n", uniqueFeatures.size());
gtsam::NonlinearFactorGraph graph;
std::unordered_set<uint64_t> imageConstraints;
size_t smartFactorConstraintCount = 0;
auto featureNoise = gtsam::noiseModel::Isotropic::Sigma(2, 1.0); // sigma = pixels in u/v
for (auto const& [featureId, imagesWithUniqueFeature]: uniqueFeatures | enumerate()) {
auto factor = std::make_shared<SmartFactor>(featureNoise, K);
for (auto const& image: imagesWithUniqueFeature) {
factor->add(Point2(image.keypoint.pt.x, image.keypoint.pt.y), gtsam::Symbol('x', image.component.imageIndex));
++smartFactorConstraintCount;
imageConstraints.insert(image.component.imageIndex);
}
graph.push_back(factor);
}
if (imageConstraints.size() != images.size()) throw std::runtime_error("Each image needs a constraint!");
graph.saveGraph("graph.dot");
pcl::visualization::PCLVisualizer viewer("3D Viewer");
viewer.setBackgroundColor(0.16, 0.17, 0.18);
viewer.initCameraParameters();
gtsam::Values initial;
std::ofstream estimates("results/" + DATASET + "/estimates.txt");
Pose3 globalPose = Pose3::Identity();
Pose3 newPose = Pose3::Identity();
initial.insert(gtsam::Symbol('x', 0), globalPose);
estimates << "1 0 0 0 1 0 0 0 1 0 0 0" << std::endl;
for (uint64_t i = 1; i < images.size(); ++i) {
Image const& image1 = images[i - 1];
Image const& image2 = images[i];
cv::BFMatcher matcher{cv::NORM_L2, true};
std::vector<cv::DMatch> matches;
matcher.match(image1.descriptors, image2.descriptors, matches);
auto points1 = matches | std::views::transform([&](auto const& match) { return image1.keypoints[match.queryIdx].pt; }) | collect<std::vector<cv::Point2f>>();
auto points2 = matches | std::views::transform([&](auto const& match) { return image2.keypoints[match.trainIdx].pt; }) | collect<std::vector<cv::Point2f>>();
cv::Mat Kcv;
cv::eigen2cv(K->K(), Kcv);
cv::Mat Ecv = cv::findEssentialMat(points1, points2, Kcv, cv::RANSAC, 0.999, 1.0);
cv::Mat Rcv, tcv;
cv::recoverPose(Ecv, points1, points2, Kcv, Rcv, tcv);
Matrix3 R;
cv::cv2eigen(Rcv, R);
Point3 t;
cv::cv2eigen(tcv, t);
estimates << R(0, 0) << " " << R(0, 1) << " " << R(0, 2) << " " << R(1, 0) << " " << R(1, 1) << " " << R(1, 2) << " " << R(2, 0) << " " << R(2, 1) << " " << R(2, 2) << " " << t(0) << " " << t(1) << " " << t(2) << std::endl;
if (i == 1 || i == 2) {
auto initialNoise = gtsam::noiseModel::Diagonal::Sigmas((Vector(6) << Vector3::Constant(0.1), Vector3::Constant(0.3)).finished());// rpy (rad) then xyz (m)
graph.addPrior(gtsam::Symbol('x', i - 1), globalPose, initialNoise);
}
Pose3 poseBetween{Rot3{R}, t * 0.3};
newPose = globalPose * poseBetween;
pcl::PointXYZ oldPoint (globalPose.translation().x(), globalPose.translation().y(), globalPose.translation().z());
pcl::PointXYZ newPoint(newPose.translation().x(), newPose.translation().y(), newPose.translation().z());
viewer.addLine(oldPoint, newPoint, 0.66, 0.62, 0.93, "line" + std::to_string(i));
globalPose = newPose;
initial.insert(gtsam::Symbol('x', i), globalPose);
Point3 origin = globalPose* Point3{0, 0, 0};
Point3 tip = globalPose* Point3{0, 0, 0.15};
pcl::PointXYZ pointPcl(origin.x(), origin.y(), origin.z());
pcl::PointXYZ pointPclTip(tip.x(), tip.y(), tip.z());
viewer.addLine(pointPcl, pointPclTip, 0.91, 0.42, 0.53, "initial" + std::to_string(i));
viewer.addSphere(pointPclTip, 0.006, 0.91, 0.42, 0.53, "initialTip" + std::to_string(i));
}
for (uint64_t i = 0; i < uniqueFeatures.size(); ++i) {
initial.insert(gtsam::Symbol('l', i), Point3{});
}
gtsam::DoglegParams params;
gtsam::Values result;
try {
result = gtsam::DoglegOptimizer(graph, initial, params).optimize();
} catch (gtsam::IndeterminantLinearSystemException& e) {
std::cout << "IndeterminantLinearSystemException: " << e.what() << std::endl;
std::printf("Variables: %u\n", uniqueFeatures.size() + images.size());
std::printf("SmartFactor Constraints: %zu\n", smartFactorConstraintCount);
return 1;
}
result.print("result: ");
for (uint64_t i = 0; i < uniqueFeatures.size(); ++i) {
auto smart = std::dynamic_pointer_cast<SmartFactor>(graph[i]);
if (!smart) continue;
gtsam::TriangulationResult t = smart->point();
double norm = t->x() * t->x() + t->y() * t->y() + t->z() * t->z();
if (!t || !t.valid() || norm > 10000) continue;
double sideLength = 0.007;
viewer.addCube(t->x() - sideLength / 2, t->x() + sideLength / 2,
t->y() - sideLength / 2, t->y() + sideLength / 2,
t->z() - sideLength / 2, t->z() + sideLength / 2,
1, 1, 1, "feature" + std::to_string(i));
}
for(uint64_t i = 0; i < images.size() - 1; ++i) {
auto pose1 = result.at<Pose3>(gtsam::Symbol('x', i));
Point3 origin = pose1* Point3{0, 0, 0};
auto pose2 = result.at<Pose3>(gtsam::Symbol('x', i + 1));
Point3 to = pose2* Point3{0, 0, 0};
pcl::PointXYZ pointOrigin(origin.x(), origin.y(), origin.z());
pcl::PointXYZ pointTo(to.x(), to.y(), to.z());
viewer.addLine(pointOrigin, pointTo, 0.56, 0.85, 0.89, "resultLine" + std::to_string(i));
}
std::ofstream resultsFile("results/" + DATASET + "/results.txt");
for (uint64_t i = 0; i < images.size(); ++i) {
auto pose = result.at<Pose3>(gtsam::Symbol('x', i));
Matrix3 rot = pose.rotation().matrix();
Point3 origin = pose* Point3{0, 0, 0};
resultsFile << rot(0, 0) << " " << rot(0, 1) << " " << rot(0, 2) << " " << rot(1, 0) << " " << rot(1, 1) << " " << rot(1, 2) << " " << rot(2, 0) << " " << rot(2, 1) << " " << rot(2, 2) << " " << origin.x() << " " << origin.y() << " " << origin.z() << std::endl;
Point3 tip = pose* Point3{0, 0, 0.15};
pcl::PointXYZ pointPcl(origin.x(), origin.y(), origin.z());
pcl::PointXYZ pointPclTip(tip.x(), tip.y(), tip.z());
viewer.addLine(pointPcl, pointPclTip, 0.5, 0.83, 0.49, "result" + std::to_string(i));
viewer.addSphere(pointPclTip, 0.006, 0.5, 0.83, 0.49, "resultTip" + std::to_string(i));
}
std::printf("Variables: %u\n", uniqueFeatures.size() + images.size());
std::printf("SmartFactor Constraints: %u\n", smartFactorConstraintCount);
std::printf("Error: %f %f\n", graph.error(result), graph.error(initial));
viewer.spin();
return EXIT_SUCCESS;
}