-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
310 lines (295 loc) · 10.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import torch
import gradio as gr
import librosa
import numpy as np
import logging
from fairseq import checkpoint_utils
from vc_infer_pipeline import VC
import traceback
from config import Config
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
from i18n import I18nAuto
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
i18n = I18nAuto()
i18n.print()
config = Config()
weight_root = "weights"
weight_uvr5_root = "uvr5_weights"
index_root = "logs"
names = []
hubert_model = None
for name in os.listdir(weight_root):
if name.endswith(".pth"):
names.append(name)
index_paths = []
for root, dirs, files in os.walk(index_root, topdown=False):
for name in files:
if name.endswith(".index") and "trained" not in name:
index_paths.append("%s/%s" % (root, name))
def get_vc(sid):
global n_spk, tgt_sr, net_g, vc, cpt, version
if sid == "" or sid == []:
global hubert_model
if hubert_model != None:
del net_g, n_spk, vc, hubert_model, tgt_sr
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(
*cpt["config"], is_half=config.is_half
)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(
*cpt["config"], is_half=config.is_half
)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del net_g, cpt
if torch.cuda.is_available():
torch.cuda.empty_cache()
cpt = None
return {"visible": False, "__type__": "update"}
person = "%s/%s" % (weight_root, sid)
print("loading %s" % person)
cpt = torch.load(person, map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt["weight"], strict=False))
net_g.eval().to(config.device)
if config.is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
n_spk = cpt["config"][-3]
return {"visible": True, "maximum": n_spk, "__type__": "update"}
def load_hubert():
global hubert_model
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
["hubert_base.pt"],
suffix="",
)
hubert_model = models[0]
hubert_model = hubert_model.to(config.device)
if config.is_half:
hubert_model = hubert_model.half()
else:
hubert_model = hubert_model.float()
hubert_model.eval()
def vc_single(
sid,
input_audio_path,
f0_up_key,
f0_file,
f0_method,
file_index,
file_index2,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
):
global tgt_sr, net_g, vc, hubert_model, version
if input_audio_path is None:
return "You need to upload an audio", None
f0_up_key = int(f0_up_key)
try:
audio = input_audio_path[1] / 32768.0
if len(audio.shape) == 2:
audio = np.mean(audio, -1)
audio = librosa.resample(audio, orig_sr=input_audio_path[0], target_sr=16000)
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1:
audio /= audio_max
times = [0, 0, 0]
if hubert_model == None:
load_hubert()
if_f0 = cpt.get("f0", 1)
file_index = (
(
file_index.strip(" ")
.strip('"')
.strip("\n")
.strip('"')
.strip(" ")
.replace("trained", "added")
)
if file_index != ""
else file_index2
)
audio_opt = vc.pipeline(
hubert_model,
net_g,
sid,
audio,
input_audio_path,
times,
f0_up_key,
f0_method,
file_index,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
f0_file=f0_file,
)
if resample_sr >= 16000 and tgt_sr != resample_sr:
tgt_sr = resample_sr
index_info = (
"Using index:%s." % file_index
if os.path.exists(file_index)
else "Index not used."
)
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
index_info,
times[0],
times[1],
times[2],
), (tgt_sr, audio_opt)
except:
info = traceback.format_exc()
print(info)
return info, (None, None)
app = gr.Blocks()
with app:
with gr.Tabs():
with gr.TabItem("在线demo"):
gr.Markdown(
value="""
RVC 在线demo
"""
)
sid = gr.Dropdown(label=i18n("Inferencing voice:"), choices=sorted(names))
with gr.Column():
spk_item = gr.Slider(
minimum=0,
maximum=2333,
step=1,
label=i18n("Select Speaker/Singer ID:"),
value=0,
visible=False,
interactive=True,
)
sid.change(
fn=get_vc,
inputs=[sid],
outputs=[spk_item],
)
gr.Markdown(
value=i18n("Recommended +12 key for male to female conversion, and -12 key for female to male conversion. If the sound range goes too far and the voice is distorted, you can also adjust it to the appropriate range by yourself.")
)
vc_input3 = gr.Audio(label="上传音频(长度小于90秒)")
vc_transform0 = gr.Number(label=i18n("Transpose (integer, number of semitones, raise by an octave: 12, lower by an octave: -12):"), value=0)
f0method0 = gr.Radio(
label=i18n("Select the pitch extraction algorithm:"),
choices=["pm", "harvest", "crepe"],
value="pm",
interactive=True,
)
filter_radius0 = gr.Slider(
minimum=0,
maximum=7,
label=i18n("If >=3: apply median filtering to the harvested pitch results. The value represents the filter radius and can reduce breathiness."),
value=3,
step=1,
interactive=True,
)
with gr.Column():
file_index1 = gr.Textbox(
label=i18n("Feature search dataset file path"),
value="",
interactive=False,
visible=False,
)
file_index2 = gr.Dropdown(
label=i18n("Auto-detect index path and select from the dropdown:"),
choices=sorted(index_paths),
interactive=True,
)
index_rate1 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("Search feature ratio:"),
value=0.88,
interactive=True,
)
resample_sr0 = gr.Slider(
minimum=0,
maximum=48000,
label=i18n("Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling:"),
value=0,
step=1,
interactive=True,
)
rms_mix_rate0 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used:"),
value=1,
interactive=True,
)
protect0 = gr.Slider(
minimum=0,
maximum=0.5,
label=i18n("Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy:"),
value=0.33,
step=0.01,
interactive=True,
)
f0_file = gr.File(label=i18n("F0 curve file (optional). One pitch per line. Replaces the default F0 and pitch modulation:"))
but0 = gr.Button(i18n("Convert"), variant="primary")
vc_output1 = gr.Textbox(label=i18n("Output information:"))
vc_output2 = gr.Audio(label=i18n("Export audio (click on the three dots in the lower right corner to download)"))
but0.click(
vc_single,
[
spk_item,
vc_input3,
vc_transform0,
f0_file,
f0method0,
file_index1,
file_index2,
index_rate1,
filter_radius0,
resample_sr0,
rms_mix_rate0,
protect0,
],
[vc_output1, vc_output2],
)
app.launch()