-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_nsf_sim_cache_sid_load_pretrain.py
510 lines (438 loc) · 18.1 KB
/
train_nsf_sim_cache_sid_load_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
import sys, os
now_dir = os.getcwd()
sys.path.append(os.path.join(now_dir))
sys.path.append(os.path.join(now_dir, "train"))
import utils
import datetime
hps = utils.get_hparams()
os.environ["CUDA_VISIBLE_DEVICES"] = hps.gpus.replace("-", ",")
n_gpus = len(hps.gpus.split("-"))
from random import shuffle, randint
import traceback, json, argparse, itertools, math, torch, pdb
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.cuda.amp import autocast, GradScaler
from lib.infer_pack import commons
from time import sleep
from time import time as ttime
from data_utils import (
TextAudioLoaderMultiNSFsid,
TextAudioLoader,
TextAudioCollateMultiNSFsid,
TextAudioCollate,
DistributedBucketSampler,
)
import csv
if hps.version == "v1":
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid as RVC_Model_f0,
SynthesizerTrnMs256NSFsid_nono as RVC_Model_nof0,
MultiPeriodDiscriminator,
)
else:
from lib.infer_pack.models import (
SynthesizerTrnMs768NSFsid as RVC_Model_f0,
SynthesizerTrnMs768NSFsid_nono as RVC_Model_nof0,
MultiPeriodDiscriminatorV2 as MultiPeriodDiscriminator,
)
from losses import generator_loss, discriminator_loss, feature_loss, kl_loss
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from process_ckpt import savee
global global_step
global_step = 0
class EpochRecorder:
def __init__(self):
self.last_time = ttime()
def record(self):
now_time = ttime()
elapsed_time = now_time - self.last_time
self.last_time = now_time
elapsed_time_str = str(datetime.timedelta(seconds=elapsed_time))
current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
return f"[{current_time}] | ({elapsed_time_str})"
def main():
n_gpus = torch.cuda.device_count()
if torch.cuda.is_available() == False and torch.backends.mps.is_available() == True:
n_gpus = 1
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
children = []
for i in range(n_gpus):
subproc = mp.Process(
target=run,
args=(
i,
n_gpus,
hps,
),
)
children.append(subproc)
subproc.start()
for i in range(n_gpus):
children[i].join()
def reset_stop_flag():
with open("csvdb/stop.csv", "w+", newline="") as STOPCSVwrite:
csv_writer = csv.writer(STOPCSVwrite, delimiter=",")
csv_writer.writerow(["False"])
def create_model(hps, model_f0, model_nof0):
filter_length_adjusted = hps.data.filter_length // 2 + 1
segment_size_adjusted = hps.train.segment_size // hps.data.hop_length
is_half = hps.train.fp16_run
sr = hps.sample_rate
model = model_f0 if hps.if_f0 == 1 else model_nof0
return model(
filter_length_adjusted,
segment_size_adjusted,
**hps.model,
is_half=is_half,
sr=sr
)
def move_model_to_cuda_if_available(model, rank):
if torch.cuda.is_available():
return model.cuda(rank)
else:
return model
def create_optimizer(model, hps):
return torch.optim.AdamW(
model.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
def create_ddp_model(model, rank):
if torch.cuda.is_available():
return DDP(model, device_ids=[rank])
else:
return DDP(model)
def create_dataset(hps, if_f0=True):
return TextAudioLoaderMultiNSFsid(hps.data.training_files, hps.data) if if_f0 else TextAudioLoader(hps.data.training_files, hps.data)
def create_sampler(dataset, batch_size, n_gpus, rank):
return DistributedBucketSampler(
dataset,
batch_size * n_gpus,
# [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200,1400], # 16s
[100, 200, 300, 400, 500, 600, 700, 800, 900], # 16s
num_replicas=n_gpus,
rank=rank,
shuffle=True,
)
def set_collate_fn(if_f0=True):
return TextAudioCollateMultiNSFsid() if if_f0 else TextAudioCollate()
def run(rank, n_gpus, hps):
global global_step
if rank == 0:
logger = utils.get_logger(hps.model_dir)
logger.info(hps)
# utils.check_git_hash(hps.model_dir)
writer = SummaryWriter(log_dir=hps.model_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
dist.init_process_group(
backend="gloo", init_method="env://", world_size=n_gpus, rank=rank
)
torch.manual_seed(hps.train.seed)
if torch.cuda.is_available():
torch.cuda.set_device(rank)
train_dataset = TextAudioLoaderMultiNSFsid(
hps.data.training_files, hps.data
) if hps.if_f0 == 1 else TextAudioLoader(hps.data.training_files, hps.data)
train_sampler = DistributedBucketSampler(
train_dataset,
hps.train.batch_size * n_gpus,
# [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200,1400], # 16s
[100, 200, 300, 400, 500, 600, 700, 800, 900], # 16s
num_replicas=n_gpus,
rank=rank,
shuffle=True,
)
# It is possible that dataloader's workers are out of shared memory. Please try to raise your shared memory limit.
# num_workers=8 -> num_workers=4
collate_fn = TextAudioCollateMultiNSFsid() if hps.if_f0 == 1 else TextAudioCollate()
train_loader = DataLoader(
train_dataset,
num_workers=4,
shuffle=False,
pin_memory=True,
collate_fn=collate_fn,
batch_sampler=train_sampler,
persistent_workers=True,
prefetch_factor=8,
)
net_g = create_model(hps, RVC_Model_f0, RVC_Model_nof0)
net_g = move_model_to_cuda_if_available(net_g, rank)
net_d = move_model_to_cuda_if_available(MultiPeriodDiscriminator(hps.model.use_spectral_norm), rank)
optim_g = create_optimizer(net_g, hps)
optim_d = create_optimizer(net_d, hps)
# net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
# net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
net_g = create_ddp_model(net_g, rank)
net_d = create_ddp_model(net_d, rank)
try: # 如果能加载自动resume
_, _, _, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d
) # D多半加载没事
if rank == 0:
logger.info("loaded D")
# _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g,load_opt=0)
_, _, _, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g
)
global_step = (epoch_str - 1) * len(train_loader)
# epoch_str = 1
# global_step = 0
except: # 如果首次不能加载,加载pretrain
# traceback.print_exc()
epoch_str = 1
global_step = 0
if hps.pretrainG != "":
if rank == 0:
logger.info(f"loaded pretrained {hps.pretrainG}")
print(
net_g.module.load_state_dict(
torch.load(hps.pretrainG, map_location="cpu")["model"]
)
) ##测试不加载优化器
if hps.pretrainD != "":
if rank == 0:
logger.info("loaded pretrained %s" % (hps.pretrainD))
print(
net_d.module.load_state_dict(
torch.load(hps.pretrainD, map_location="cpu")["model"]
)
)
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
scaler = GradScaler(enabled=hps.train.fp16_run)
cache = []
for epoch in range(epoch_str, hps.train.epochs + 1):
if rank == 0:
train_and_evaluate(
rank,
epoch,
hps,
[net_g, net_d],
[optim_g, optim_d],
[scheduler_g, scheduler_d],
scaler,
[train_loader, None],
logger,
[writer, writer_eval],
cache,
)
else:
train_and_evaluate(
rank,
epoch,
hps,
[net_g, net_d],
[optim_g, optim_d],
[scheduler_g, scheduler_d],
scaler,
[train_loader, None],
None,
None,
cache,
)
scheduler_g.step()
scheduler_d.step()
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers, cache):
net_g, net_d = nets
optim_g, optim_d = optims
train_loader, eval_loader = loaders
writer, writer_eval = (writers if writers is not None else (None, None))
train_loader.batch_sampler.set_epoch(epoch)
global global_step
nets = [net_g, net_d]
for net in nets:
net.train()
def save_checkpoint(name):
ckpt = net_g.module.state_dict() if hasattr(net_g, "module") else net_g.state_dict()
result = savee(ckpt, hps.sample_rate, hps.if_f0, name, epoch, hps.version, hps)
logger.info("Saving final ckpt: {}".format(result))
sleep(1)
if hps.if_cache_data_in_gpu:
# Use Cache
data_iterator = cache
if len(cache) == 0:
gpu_available = torch.cuda.is_available()
for batch_idx, info in enumerate(train_loader):
# Unpack
info = list(info)
if hps.if_f0:
tensors = info
else:
# We consider that pitch and pitchf are not included in this case
tensors = info[:2] + info[4:]
# Load on CUDA
if gpu_available:
tensors = [tensor.cuda(rank, non_blocking=True) for tensor in tensors]
# Cache on list
cache.extend([(batch_idx, tuple(tensor for tensor in tensors if tensor is not None))])
else:
shuffle(cache)
else:
data_iterator = enumerate(train_loader)
def to_gpu_if_available(tensor):
return tensor.cuda(rank, non_blocking=True) if torch.cuda.is_available() else tensor
# Run steps
gpu_available = torch.cuda.is_available()
epoch_recorder = EpochRecorder()
fp16_run = hps.train.fp16_run
c_mel = hps.train.c_mel
for batch_idx, info in data_iterator:
# Data
## Unpack
if hps.if_f0 == 1:
phone, phone_lengths, pitch, pitchf, spec, spec_lengths, wave, wave_lengths, sid = info
else:
phone, phone_lengths, spec, spec_lengths, wave, wave_lengths, sid = info
## Load on CUDA
if (not hps.if_cache_data_in_gpu) and gpu_available:
phone = to_gpu_if_available(phone)
phone_lengths = to_gpu_if_available(phone_lengths)
sid = to_gpu_if_available(sid)
spec = to_gpu_if_available(spec)
spec_lengths = to_gpu_if_available(spec_lengths)
wave = to_gpu_if_available(wave)
if hps.if_f0 == 1:
pitch = to_gpu_if_available(pitch)
pitchf = to_gpu_if_available(pitchf)
# Calculate
with autocast(enabled=fp16_run):
if hps.if_f0 == 1:
y_hat, ids_slice, x_mask, z_mask, (z, z_p, m_p, logs_p, m_q, logs_q) = \
net_g(phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid)
else:
y_hat, ids_slice, x_mask, z_mask, (z, z_p, m_p, logs_p, m_q, logs_q) = \
net_g(phone, phone_lengths, spec, spec_lengths, sid)
mel = spec_to_mel_torch(spec, hps.data.filter_length, hps.data.n_mel_channels,
hps.data.sampling_rate, hps.data.mel_fmin, hps.data.mel_fmax)
y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
y_hat_mel = mel_spectrogram_torch(
y_hat.float().squeeze(1),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
if fp16_run: y_hat_mel = y_hat_mel.half()
wave = commons.slice_segments(wave, ids_slice * hps.data.hop_length,
hps.train.segment_size) # slice
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach())
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
net_d_params = net_d.parameters()
net_g_params = net_g.parameters()
lr_scalar = optim_g.param_groups[0]["lr"]
optim_d.zero_grad()
scaler.scale(loss_disc).backward()
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value_(net_d_params, None)
scaler.step(optim_d)
with autocast(enabled=fp16_run):
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat)
loss_mel = F.l1_loss(y_mel, y_hat_mel) * c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g_params, None)
scaler.step(optim_g)
scaler.update()
if rank == 0 and global_step % hps.train.log_interval == 0:
lr = lr_scalar # use stored lr scalar here
logger.info("Train Epoch: {} [{:.0f}%]".format(epoch, 100.0 * batch_idx / len(train_loader)))
# Amor For Tensorboard display
loss_mel, loss_kl = min(loss_mel, 75), min(loss_kl, 9)
scalar_dict = {
"loss/g/total": loss_gen_all,
"loss/d/total": loss_disc,
"learning_rate": lr,
"grad_norm_d": grad_norm_d,
"grad_norm_g": grad_norm_g,
"loss/g/fm": loss_fm,
"loss/g/mel": loss_mel,
"loss/g/kl": loss_kl,
**{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)},
**{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)},
**{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)},
}
image_dict = {
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
}
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict,
)
global_step += 1
if epoch % hps.save_every_epoch == 0:
if rank == 0:
save_format = str(2333333) if hps.if_latest else str(global_step)
model_dir = hps.model_dir
learning_rate = hps.train.learning_rate
name_epoch = f"{hps.name}_e{epoch}"
models = {'G': net_g, 'D': net_d}
optims = {'G': optim_g, 'D': optim_d}
for model_name, model in models.items():
path = os.path.join(model_dir, f"{model_name}_{save_format}.pth")
utils.save_checkpoint(model, optims[model_name], learning_rate, epoch, path)
if hps.save_every_weights == "1":
ckpt = net_g.module.state_dict() if hasattr(net_g, "module") else net_g.state_dict()
logger.info(
"saving ckpt %s_%s"
% (
name_epoch,
savee(
ckpt,
hps.sample_rate,
hps.if_f0,
f"{name_epoch}_s{global_step}",
epoch,
hps.version,
hps,
),
)
)
stopbtn = False
try:
with open("csvdb/stop.csv", 'r') as csv_file:
stopbtn_str = next(csv.reader(csv_file), [None])[0]
if stopbtn_str is not None: stopbtn = stopbtn_str.lower() == 'true'
except (ValueError, TypeError, FileNotFoundError, IndexError) as e:
print(f"Handling exception: {e}")
stopbtn = False
if stopbtn:
logger.info("Stop Button was pressed. The program is closed.")
ckpt = net_g.module.state_dict() if hasattr(net_g, "module") else net_g.state_dict()
logger.info(f"Saving final ckpt:{savee(ckpt, hps.sample_rate, hps.if_f0, hps.name, epoch, hps.version, hps)}")
sleep(1)
reset_stop_flag()
os._exit(2333333)
if rank == 0:
logger.info(f"====> Epoch: {epoch} {epoch_recorder.record()}")
if epoch >= hps.total_epoch:
logger.info("Training is done. The program is closed.")
save_checkpoint(hps.name)
os._exit(2333333)
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn")
main()