-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathprepro.py
290 lines (234 loc) · 12.2 KB
/
prepro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
"""Visdial v1.0 dataset preprocessing script.
Tokenizes captions, questions, answers, image indices.
Builds vocabulary mappings and image ids with their file paths.
Adopted mostly from https://www.github.com/batra-mlp-lab/visdial
"""
import argparse
import glob
import h5py
import json
import os
import numpy as np
from nltk.tokenize import word_tokenize
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument('-download', action='store_true', help='Whether to download VisDial v1.0 data')
parser.add_argument('-train_split', default='train', help='Choose the data split: train | trainval', choices=['train', 'trainval'])
# Input files
parser.add_argument('-input_json_train', default='train_options.json', help='Input `train` json file')
parser.add_argument('-input_json_val', default='val_options.json', help='Input `val` json file')
parser.add_argument('-input_json_test', default='test_options.json', help='Input `test` json file')
parser.add_argument('-image_root', default='', help='Path to coco and VisDial val/test images')
parser.add_argument('-image_position', default='middle', help='choose frame position in video')
parser.add_argument('-input_vocab', default=False, help='Optional vocab file; similar to visdial_params.json')
# Output files
parser.add_argument('-output_json', default='params.json', help='Output json file')
parser.add_argument('-output_h5', default='dialogs.h5', help='Output hdf5 file')
parser.add_argument('-output_vocab', default='vocab.json', help='Output hdf5 file')
# Options
parser.add_argument('-max_ques_len', default=20, type=int, help='Max length of questions')
parser.add_argument('-max_ans_len', default=20, type=int, help='Max length of answers')
parser.add_argument('-max_cap_len', default=40, type=int, help='Max length of captions')
parser.add_argument('-word_count_threshold', default=5, type=int, help='Min threshold of word count to include in vocabulary')
parser.add_argument('-save_vocab', default=True, type=bool, help='save vocab')
def tokenize_data(data, word_count=False):
"""Tokenize captions, questions and answers, maintain word count
if required.
"""
word_counts = {}
dialogs = data['data']['dialogs']
# dialogs is a nested dict so won't be copied, just a reference
print("[%s] Tokenizing captions..." % data['split'])
for i, dialog in enumerate(tqdm(dialogs)):
caption = word_tokenize(dialog['caption'])
dialogs[i]['caption_tokens'] = caption
print("[%s] Tokenizing questions and answers..." % data['split'])
q_tokens, a_tokens = [], []
for q in tqdm(data['data']['questions']):
#q_tokens.append(word_tokenize(q + '?'))
q_tokens.append(word_tokenize(q))
for a in tqdm(data['data']['answers']):
a_tokens.append(word_tokenize(a))
data['data']['question_tokens'] = q_tokens
data['data']['answer_tokens'] = a_tokens
print("[%s] Filling missing values in dialog, if any..." % data['split'])
for i, dialog in enumerate(tqdm(dialogs)):
# last round of dialog will not have answer for test split
#if 'answer' not in dialog['dialog'][-1]:
# dialog['dialog'][-1]['answer'] = -1
# right-pad dialog with empty question-answer pairs at the end
dialog['num_rounds'] = len(dialog['dialog'])
assert len(dialog['dialog']) == 10
#while len(dialog['dialog']) < 10:
# dialog['dialog'].append({'question': -1, 'answer': -1})
dialogs[i] = dialog
if word_count:
print("[%s] Building word counts from tokens..." % data['split'])
for i, dialog in enumerate(tqdm(dialogs)):
caption = dialogs[i]['caption_tokens']
all_qa = []
for j in range(10):
all_qa += q_tokens[dialog['dialog'][j]['question']]
all_qa += a_tokens[dialog['dialog'][j]['answer']]
for word in caption + all_qa:
word_counts[word] = word_counts.get(word, 0) + 1
print('\n')
return data, word_counts
def encode_vocab(data, word2ind):
"""Converts string tokens to indices based on given dictionary."""
dialogs = data['data']['dialogs']
print("[%s] Encoding caption tokens..." % data['split'])
for i, dialog in enumerate(tqdm(dialogs)):
dialogs[i]['caption_tokens'] = [word2ind.get(word, word2ind['UNK']) \
for word in dialog['caption_tokens']]
print("[%s] Encoding question and answer tokens..." % data['split'])
q_tokens = data['data']['question_tokens']
a_tokens = data['data']['answer_tokens']
for i, q in enumerate(tqdm(q_tokens)):
q_tokens[i] = [word2ind.get(word, word2ind['UNK']) for word in q]
for i, a in enumerate(tqdm(a_tokens)):
a_tokens[i] = [word2ind.get(word, word2ind['UNK']) for word in a]
data['data']['question_tokens'] = q_tokens
data['data']['answer_tokens'] = a_tokens
return data
def create_data_mats(data, params, dtype):
num_threads = len(data['data']['dialogs'])
data_mats = {}
data_mats['img_pos'] = np.arange(num_threads, dtype=np.int)
print("[%s] Creating caption data matrices..." % data['split'])
max_cap_len = params.max_cap_len
captions = np.zeros([num_threads, max_cap_len])
caption_len = np.zeros(num_threads, dtype=np.int)
for i, dialog in enumerate(tqdm(data['data']['dialogs'])):
caption_len[i] = len(dialog['caption_tokens'][0:max_cap_len])
captions[i][0:caption_len[i]] = dialog['caption_tokens'][0:max_cap_len]
data_mats['cap_length'] = caption_len
data_mats['cap'] = captions
print("[%s] Creating question and answer data matrices..." % data['split'])
num_rounds = 10
max_ques_len = params.max_ques_len
max_ans_len = params.max_ans_len
ques = np.zeros([num_threads, num_rounds, max_ques_len])
ans = np.zeros([num_threads, num_rounds, max_ans_len])
ques_length = np.zeros([num_threads, num_rounds], dtype=np.int)
ans_length = np.zeros([num_threads, num_rounds], dtype=np.int)
for i, dialog in enumerate(tqdm(data['data']['dialogs'])):
for j in range(num_rounds):
if dialog['dialog'][j]['question'] != -1:
ques_length[i][j] = len(data['data']['question_tokens'][dialog['dialog'][j]['question']][0:max_ques_len])
ques[i][j][0:ques_length[i][j]] = data['data']['question_tokens'][dialog['dialog'][j]['question']][0:max_ques_len]
if dialog['dialog'][j]['answer'] != -1:
ans_length[i][j] = len(data['data']['answer_tokens'][dialog['dialog'][j]['answer']][0:max_ans_len])
ans[i][j][0:ans_length[i][j]] = data['data']['answer_tokens'][dialog['dialog'][j]['answer']][0:max_ans_len]
data_mats['ques'] = ques
data_mats['ans'] = ans
data_mats['ques_length'] = ques_length
data_mats['ans_length'] = ans_length
print("[%s] Creating options data matrices..." % data['split'])
# options and answer_index are 1-indexed specifically for lua
options = np.ones([num_threads, num_rounds, 100])
num_rounds_list = np.full(num_threads, 10)
for i, dialog in enumerate(tqdm(data['data']['dialogs'])):
for j in range(num_rounds):
num_rounds_list[i] = dialog['num_rounds']
# v1.0 test does not have options for all dialog rounds
if 'answer_options' in dialog['dialog'][j]:
options[i][j] += np.array(dialog['dialog'][j]['answer_options'])
data_mats['num_rounds'] = num_rounds_list
data_mats['opt'] = options
#if dtype != 'test':
print("[%s] Creating ground truth answer data matrices..." % data['split'])
answer_index = np.zeros([num_threads, num_rounds])
for i, dialog in enumerate(tqdm(data['data']['dialogs'])):
for j in range(num_rounds):
answer_index[i][j] = dialog['dialog'][j]['gt_index'] + 1
data_mats['ans_index'] = answer_index
options_len = np.zeros(len(data['data']['answer_tokens']), dtype=np.int)
options_list = np.zeros([len(data['data']['answer_tokens']), max_ans_len])
for i, ans_token in enumerate(tqdm(data['data']['answer_tokens'])):
options_len[i] = len(ans_token[0:max_ans_len])
options_list[i][0:options_len[i]] = ans_token[0:max_ans_len]
data_mats['opt_length'] = options_len
data_mats['opt_list'] = options_list
return data_mats
def get_image_ids(data, id2path):
image_ids = [dialog['image_id'] for dialog in data['data']['dialogs']]
for i, image_id in enumerate(image_ids):
image_ids[i] = id2path[image_id]
return image_ids
if __name__ == "__main__":
args = parser.parse_args()
print('Reading json...')
data_train = json.load(open(args.input_json_train, 'r'))
data_val = json.load(open(args.input_json_val, 'r'))
data_test = json.load(open(args.input_json_test, 'r'))
# Tokenizing
data_train, word_counts_train = tokenize_data(data_train, True)
data_val, word_counts_val = tokenize_data(data_val, True)
data_test, word_counts_test = tokenize_data(data_test, True)
if args.input_vocab == False:
word_counts_all = dict(word_counts_train)
for word, count in word_counts_val.items():
word_counts_all[word] = word_counts_all.get(word, 0) + count
for word, count in word_counts_test.items():
word_counts_all[word] = word_counts_all.get(word, 0) + count
print('Building vocabulary...')
word_counts_all['UNK'] = args.word_count_threshold
vocab = [word for word in word_counts_all \
if word_counts_all[word] >= args.word_count_threshold]
print('Words: %d' % len(vocab))
if args.save_vocab:
json.dump(vocab, open(args.output_vocab, 'w'))
word2ind = {word: word_ind + 1 for word_ind, word in enumerate(vocab)}
ind2word = {word_ind: word for word, word_ind in word2ind.items()}
else:
print('Loading vocab from %s...' % args.input_vocab)
vocab_data = json.load(open(args.input_vocab, 'r'))
word2ind = vocab_data['word2ind']
for i in word2ind:
word2ind[i] = int(word2ind[i])
ind2word = {}
for i in vocab_data['ind2word']:
ind2word[int(i)] = vocab_data['ind2word'][i]
print('Encoding based on vocabulary...')
data_train = encode_vocab(data_train, word2ind)
data_val = encode_vocab(data_val, word2ind)
data_test = encode_vocab(data_test, word2ind)
print('Creating data matrices...')
data_mats_train = create_data_mats(data_train, args, 'train')
data_mats_val = create_data_mats(data_val, args, 'val')
data_mats_test = create_data_mats(data_test, args, 'test')
if args.train_split == 'trainval':
data_mats_trainval = {}
for key in data_mats_train:
data_mats_trainval[key] = np.concatenate((data_mats_train[key],
data_mats_val[key]), axis = 0)
print('Saving hdf5 to %s...' % args.output_h5)
f = h5py.File(args.output_h5, 'w')
if args.train_split == 'train':
for key in data_mats_train:
f.create_dataset(key + '_train', dtype='uint32', data=data_mats_train[key])
for key in data_mats_val:
f.create_dataset(key + '_val', dtype='uint32', data=data_mats_val[key])
elif args.train_split == 'trainval':
for key in data_mats_trainval:
f.create_dataset(key + '_train', dtype='uint32', data=data_mats_trainval[key])
for key in data_mats_test:
f.create_dataset(key + '_test', dtype='uint32', data=data_mats_test[key])
f.close()
out = {}
out['ind2word'] = ind2word
out['word2ind'] = word2ind
print('Preparing image paths with image_ids...')
id2path = {}
# NOTE: based on assumption that image_id is unique across all splits
for image_path in tqdm(glob.iglob(os.path.join(args.image_root, args.image_position, '*', '*.jpg'))):
id2path[image_path[-9:-4]] = '/'.join(image_path.split('/')[-2:])
out['unique_img_train'] = get_image_ids(data_train, id2path)
out['unique_img_val'] = get_image_ids(data_val, id2path)
out['unique_img_test'] = get_image_ids(data_test, id2path)
if args.train_split == 'trainval':
out['unique_img_train'] += out['unique_img_val']
out.pop('unique_img_val')
print('Saving json to %s...' % args.output_json)
json.dump(out, open(args.output_json, 'w'))