-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathyoutubednn.py
89 lines (71 loc) · 4.19 KB
/
youtubednn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from .PLBaseModel import PLBaseModel
from deepctr_torch.layers import DNN
from deepctr_torch.inputs import SparseFeat, DenseFeat, VarLenSparseFeat
from deepctr_torch.inputs import get_varlen_pooling_list, varlen_embedding_lookup
from ..utils import combined_dnn_input
from ..inputs import create_embedding_matrix
import torch.nn.functional as F
# youtube dnn 的结构没有什么改变
class YouTubeDNN(PLBaseModel):
def __init__(self, user_feature_columns, item_feature_columns,
num_sampled=5, user_dnn_hidden_units=[64, 32],
dnn_activation='relu', dnn_use_bn=False,
device="cpu", init_std=0.002,
l2_reg_dnn=0, l2_reg_embedding=1e-6,
dnn_dropout=0, activation='relu', seed=1024, **kwargs):
super(YouTubeDNN, self).__init__(user_feature_columns, item_feature_columns,
l2_reg_linear=1e-5, l2_reg_embedding=1e-5,
init_std=0.0001, seed=1024, task='binary', device='cpu', **kwargs)
self.num_sampled = num_sampled
self.user_dnn = DNN(self.compute_input_dim(user_feature_columns), user_dnn_hidden_units,
activation=dnn_activation, init_std=init_std, device=device)
def forward(self, X):
batch_size = X.size(0)
user_embedding = self.user_tower(X)
item_embedding = self.item_tower(X)
if self.mode == "user_representation":
return user_embedding
if self.mode == "item_representation":
return item_embedding
score = F.cosine_similarity(user_embedding, item_embedding, dim=-1)
score = score.view(batch_size, -1)
return score
def item_tower(self, X):
if self.mode == "user_representation":
return None
item_embedding_list, _ = self.input_from_item_feature_columns(X, self.item_feature_columns, self.embedding_dict)
item_embedding = item_embedding_list[0] # (batch, movie_list_len, feat_dim)
return item_embedding
def user_tower(self, X):
if self.mode == "item_representation":
return None
# sample softmax 可以通过 构造样本实现
user_sparse_embedding_list, user_dense_value_list = \
self.input_from_feature_columns(X, self.user_feature_columns, self.embedding_dict)
user_dnn_input = combined_dnn_input(user_sparse_embedding_list, user_dense_value_list)
user_embedding = self.user_dnn(user_dnn_input) # (batch_size, embedding_dim)
user_embedding = user_embedding.unsqueeze(1) # (batch, 1, embedding_dim)
return user_embedding
def input_from_item_feature_columns(self, X, feature_columns, embedding_dict, support_dense=True):
sparse_feature_columns = list(
filter(lambda x: isinstance(x, SparseFeat), feature_columns)) if len(feature_columns) else []
dense_feature_columns = list(
filter(lambda x: isinstance(x, DenseFeat), feature_columns)) if len(feature_columns) else []
varlen_sparse_feature_columns = list(
filter(lambda x: isinstance(x, VarLenSparseFeat), feature_columns)) if feature_columns else []
if not support_dense and len(dense_feature_columns) > 0:
raise ValueError(
"DenseFeat is not supported in dnn_feature_columns")
sparse_embedding_list = [embedding_dict[feat.embedding_name](
X[:, self.feature_index[feat.name][0]:self.feature_index[feat.name][1]].long()) for
feat in sparse_feature_columns]
# 这里返回的就是 movie_id 的 embedding
sequence_embed_dict = varlen_embedding_lookup(X, self.embedding_dict, self.feature_index,
varlen_sparse_feature_columns)
feat_name = varlen_sparse_feature_columns[0].name
item_embedding = sequence_embed_dict[feat_name]
# shape is (batch, movie_id_len, feat_dim)
varlen_sparse_embedding_list = [item_embedding]
dense_value_list = [X[:, self.feature_index[feat.name][0]:self.feature_index[feat.name][1]] for feat in
dense_feature_columns]
return sparse_embedding_list + varlen_sparse_embedding_list, dense_value_list