This repository contains the resources for our survey paper.
The main content flow and categorization of this survey.
- 2023/11/09 The first version of our paper is available on arXiv
We have surveyed papers related to Large Language Model hallucination. This includes related survey or analytical papers, hallucination causes, hallucination detection and benchmarks, hallucination mitigation, as well as challenges and open questions in the field.
We provide a curated list of survey papers that delve into the topic of hallucination in LLMs.
-
Survey of Hallucination in Natural Language Generation
ACM Computing Surveys 2023
Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Wenliang Dai, Andrea Madotto, Pascale Fung [paper] 2022.02
-
Trustworthy LLMs: a Survey and Guideline for Evaluating Large Language Models' Alignment
arXiv 2023
Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying Zhang, Ruocheng Guo, Hao Cheng, Yegor Klochkov, Muhammad Faaiz Taufiq, Hang Li [paper] 2023.08
-
Siren's Song in the AI Ocean: A Survey on Hallucination in Large Language Models
arXiv 2023
Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang, Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei Bi, Freda Shi, Shuming Shi [paper] 2023.09
-
Cognitive Mirage: A Review of Hallucinations in Large Language Models
arXiv 2023
Hongbin Ye, Tong Liu, Aijia Zhang, Wei Hua, Weiqiang Jia [paper] 2023.09
-
A Survey of Hallucination in Large Foundation Models
arXiv 2023
Vipula Rawte, Amit Sheth, Amitava Das [paper] 2023.09
-
Augmenting LLMs with Knowledge: A survey on hallucination prevention
arXiv 2023
Konstantinos Andriopoulos, Johan Pouwelse [paper] 2023.09
-
Survey on Factuality in Large Language Models: Knowledge, Retrieval and Domain-Specificity
arXiv 2023
Cunxiang Wang, Xiaoze Liu, Yuanhao Yue, Xiangru Tang, Tianhang Zhang, Cheng Jiayang, Yunzhi Yao, Wenyang Gao, Xuming Hu, Zehan Qi, Yidong Wang, Linyi Yang, Jindong Wang, Xing Xie, Zheng Zhang, Yue Zhang [paper] 2023.10
-
Insights into Classifying and Mitigating LLMs' Hallucinations
AIxIA 2023
Alessandro Bruno, Pier Luigi Mazzeo, Aladine Chetouani, Marouane Tliba, Mohamed Amine Kerkouri [paper] 2023.11
-
A Multitask, Multilingual, Multimodal Evaluation of ChatGPT on Reasoning, Hallucination, and Interactivity
arXiv 2023
Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, Pascale Fung [paper] 2023.02
-
Hallucinations in Large Multilingual Translation Models
arXiv 2023
Nuno M. Guerreiro, Duarte Alves, Jonas Waldendorf, Barry Haddow, Alexandra Birch, Pierre Colombo, André F. T. Martins [paper] 2023.03
-
Challenges and Applications of Large Language Models
arXiv 2023
Jean Kaddour, Joshua Harris, Maximilian Mozes, Herbie Bradley, Roberta Raileanu, Robert McHardy [paper] 2023.07
-
Beyond Factuality: A Comprehensive Evaluation of Large Language Models as Knowledge Generators
EMNLP 2023
Liang Chen, Yang Deng, Yatao Bian, Zeyu Qin, Bingzhe Wu, Tat-Seng Chua, Kam-Fai Wong [paper] 2023.10
Two primary types of hallucination: factuality hallucination and faithfulness hallucination.
We categorize the causes of hallucinations into three main aspects: data, model training, and model inference.
Flawed Data Source
-
On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?
ACM FAccT 2021
Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, Shmargaret Shmitchell [paper] 2021.03
-
Ethical and social risks of harm from Language Models
arXiv 2021
Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang, Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, Zac Kenton, Sasha Brown, Will Hawkins, Tom Stepleton, Courtney Biles, Abeba Birhane, Julia Haas, Laura Rimell, Lisa Anne Hendricks, William Isaac, Sean Legassick, Geoffrey Irving, Iason Gabriel [paper] 2021.12
-
TruthfulQA: Measuring How Models Mimic Human Falsehoods
ACL 2022
Stephanie Lin, Jacob Hilton, Owain Evans [paper] 2021.09
-
Deduplicating Training Data Makes Language Models Better
ACL 2022
Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-Burch, Nicholas Carlini [paper] 2021.07
-
Data and its (dis)contents: A survey of dataset development and use in machine learning research
Patterns
Amandalynne Paullada, Inioluwa Deborah Raji, Emily M. Bender, Emily Denton, Alex Hanna [paper] 2020.12
-
Nationality Bias in Text Generation
EACL 2023
Pranav Narayanan Venkit, Sanjana Gautam, Ruchi Panchanadikar, Ting-Hao 'Kenneth' Huang, Shomir Wilson [paper] 2023.02
-
When Do Pre-Training Biases Propagate to Downstream Tasks? A Case Study in Text Summarization
EACL 2023
Faisal Ladhak, Esin Durmus, Mirac Suzgun, Tianyi Zhang, Dan Jurafsky, Kathleen McKeown, Tatsunori Hashimoto [paper] 2023.02
-
Entity Cloze By Date: What LMs Know About Unseen Entities
NAACL 2022 findings
Yasumasa Onoe, Michael Zhang, Eunsol Choi, Greg Durrett [paper] 2022.05
Inferior Data Utilization
-
How Pre-trained Language Models Capture Factual Knowledge? A Causal-Inspired Analysis
ACL 2022 findings
Shaobo Li, Xiaoguang Li, Lifeng Shang, Zhenhua Dong, Chengjie Sun, Bingquan Liu, Zhenzhou Ji, Xin Jiang, Qun Liu [paper] 2022.03
-
Large Language Models Struggle to Learn Long-Tail Knowledge
ICML 2023
Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, Colin Raffel [paper] 2022.11
-
Impact of Co-occurrence on Factual Knowledge of Large Language Models
EMNLP 2023 findings
Cheongwoong Kang, Jaesik Choi [paper] 2023.10
-
When Not to Trust Language Models: Investigating Effectiveness of Parametric and Non-Parametric Memories
ACL 2023
Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, Hannaneh Hajishirzi [paper] 2022.12
-
Why Does ChatGPT Fall Short in Providing Truthful Answers?
arXiv 2023
Shen Zheng, Jie Huang, Kevin Chen-Chuan Chang [paper] 2023.04
-
The Reversal Curse: LLMs trained on "A is B" fail to learn "B is A"
arXiv 2023
Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz Korbak, Owain Evans [paper] 2023.09
Hallucination from Pre-training
-
Exposing Attention Glitches with Flip-Flop Language Modeling
arXiv 2023
Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, Cyril Zhang [paper] 2023.06
-
On Exposure Bias, Hallucination and Domain Shift in Neural Machine Translation
ACL 2020
Chaojun Wang, Rico Sennrich [paper] 2020.05
-
How Language Model Hallucinations Can Snowball
arXiv 2023
Muru Zhang, Ofir Press, William Merrill, Alisa Liu, Noah A. Smith [paper] 2023.05
Hallucination from Alignment
-
Reinforcement Learning from Human Feedback: Progress and Challenges
Youtube
John Schulman [video] 2023.04
-
Reinforcement Learning for Language Models
Github Gist
Yoav Goldberg [note] 2023.04
-
Discovering Language Model Behaviors with Model-Written Evaluations
ACL 2023 findings
Ethan Perez, Sam Ringer, Kamile Lukosiute, Karina Nguyen, Edwin Chen, Scott Heiner, Craig Pettit, Catherine Olsson, Sandipan Kundu, Saurav Kadavath, Andy Jones, Anna Chen, Benjamin Mann, Brian Israel, Bryan Seethor, Cameron McKinnon, Christopher Olah, Da Yan, Daniela Amodei, Dario Amodei, Dawn Drain, Dustin Li, Eli Tran-Johnson, Guro Khundadze, Jackson Kernion, James Landis, Jamie Kerr, Jared Mueller, Jeeyoon Hyun, Joshua Landau, Kamal Ndousse, Landon Goldberg, Liane Lovitt, Martin Lucas, Michael Sellitto, Miranda Zhang, Neerav Kingsland, Nelson Elhage, Nicholas Joseph, Noemi Mercado, Nova DasSarma, Oliver Rausch, Robin Larson, Sam McCandlish, Scott Johnston, Shauna Kravec, Sheer El Showk, Tamera Lanham, Timothy Telleen-Lawton, Tom Brown, Tom Henighan, Tristan Hume, Yuntao Bai, Zac Hatfield-Dodds, Jack Clark, Samuel R. Bowman, Amanda Askell, Roger Grosse, Danny Hernandez, Deep Ganguli, Evan Hubinger, Nicholas Schiefer, Jared Kaplan [paper] 2022.12
-
Towards Understanding Sycophancy in Language Models
arXiv 2023
Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R. Bowman, Newton Cheng, Esin Durmus, Zac Hatfield-Dodds, Scott R. Johnston, Shauna Kravec, Timothy Maxwell, Sam McCandlish, Kamal Ndousse, Oliver Rausch, Nicholas Schiefer, Da Yan, Miranda Zhang, Ethan Perez [paper] 2023.10
Inherent Sampling Randomness
-
Neural Path Hunter: Reducing Hallucination in Dialogue Systems via Path Grounding
EMNLP 2021
Nouha Dziri, Andrea Madotto, Osmar Zaïane, Avishek Joey Bose [paper] 2021.04
-
Factuality Enhanced Language Models for Open-Ended Text Generation
NeurIPS 20222
Nayeon Lee, Wei Ping, Peng Xu, Mostofa Patwary, Pascale Fung, Mohammad Shoeybi, Bryan Catanzaro [paper] 2022.06
-
Characterizing Attribution and Fluency Tradeoffs for Retrieval-Augmented Large Language Models
arXiv 2023
Renat Aksitov, Chung-Ching Chang, David Reitter, Siamak Shakeri, Yunhsuan Sung [paper] 2023.02
Imperfect Decoding Representation
-
Prevent the Language Model from being Overconfident in Neural Machine Translation
ACL 2021
Mengqi Miao, Fandong Meng, Yijin Liu, Xiao-Hua Zhou, Jie Zhou [paper] 2021.05
-
Towards Improving Faithfulness in Abstractive Summarization
NeurIPS 2022
Xiuying Chen, Mingzhe Li, Xin Gao, Xiangliang Zhang [paper] 2022.10
-
Instruction Position Matters in Sequence Generation with Large Language Models
arXiv 2023
Yijin Liu, Xianfeng Zeng, Fandong Meng, Jie Zhou [paper] 2023.08
-
Breaking the Softmax Bottleneck: A High-Rank RNN Language Model
ICLR 2018
Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, William W. Cohen [paper] 2017.11
-
Softmax Bottleneck Makes Language Models Unable to Represent Multi-mode Word Distributions
ACL 2022
Haw-Shiuan Chang, Andrew McCallum [paper] 2022.05
We offer a detailed overview of the current methodologies for detecting hallucinations, specifically focusing on factuality and faithfulness. Additionally, we review the relevant benchmarks, which are principally divided into two categories: hallucination evaluation benchmarks and hallucination detection benchmarks
Factuality Hallucination Detection
-
Complex Claim Verification with Evidence Retrieved in the Wild
arXiv 2023
Jifan Chen, Grace Kim, Aniruddh Sriram, Greg Durrett, Eunsol Choi [paper] 2023.05
-
Beyond Factuality: A Comprehensive Evaluation of Large Language Models as Knowledge Generators
EMNLP 2023
Liang Chen, Yang Deng, Yatao Bian, Zeyu Qin, Bingzhe Wu, Tat-Seng Chua, Kam-Fai Wong [paper] 2023.10
-
FActScore: Fine-grained Atomic Evaluation of Factual Precision in Long Form Text Generation
arXiv 2023
Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer, Luke Zettlemoyer, Hannaneh Hajishirzi [paper] 2023.05
-
Fact-Checking Complex Claims with Program-Guided Reasoning
ACL 2023
Liangming Pan, Xiaobao Wu, Xinyuan Lu, Anh Tuan Luu, William Yang Wang, Min-Yen Kan, Preslav Nakov [paper] 2023.05
-
Zero-shot Faithful Factual Error Correction
ACL 20023
Kung-Hsiang Huang, Hou Pong Chan, Heng Ji [paper] 2023.05
-
FACTKG: Fact Verification via Reasoning on Knowledge Graphs
ACL 2023
Jiho Kim, Sungjin Park, Yeonsu Kwon, Yohan Jo, James Thorne, Edward Choi [paper] 2023.05
-
Retrieving Supporting Evidence for LLMs Generated Answers
arXiv 2023
Siqing Huo, Negar Arabzadeh, Charles L. A. Clarke [paper] 2023.06
-
A Stitch in Time Saves Nine: Detecting and Mitigating Hallucinations of LLMs by Validating Low-Confidence Generation
arXiv 2023
Neeraj Varshney, Wenlin Yao, Hongming Zhang, Jianshu Chen, Dong Yu [paper] 2023.07
-
FacTool: Factuality Detection in Generative AI -- A Tool Augmented Framework for Multi-Task and Multi-Domain Scenarios
arXiv 2023
I-Chun Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan, Kehua Feng, Chunting Zhou, Junxian He, Graham Neubig, Pengfei Liu [paper] 2023.07
-
Truth-O-Meter: Collaborating with LLM in Fighting its Hallucinations
arXiv 2023
Boris A. Galitsky [paper] 2023.07
-
KCTS: Knowledge-Constrained Tree Search Decoding with Token-Level Hallucination Detection
EMNLP 2023
Sehyun Choi, Tianqing Fang, Zhaowei Wang, Yangqiu Song [paper] 2023.10
-
Unveiling the Siren's Song: Towards Reliable Fact-Conflicting Hallucination Detection
arXiv 2023
Xiang Chen, Duanzheng Song, Honghao Gui, Chengxi Wang, Ningyu Zhang, Fei Huang, Chengfei Lv, Dan Zhang, Huajun Chen [paper] 2023.10
-
Knowledge-Augmented Language Model Verification
EMNLP 2023
Jinheon Baek, Soyeong Jeong, Minki Kang, Jong C. Park, Sung Ju Hwang [paper] 2023.10
-
SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models
arXiv 2023
Potsawee Manakul, Adian Liusie, Mark J. F. Gales [paper] 2023.03
-
LM vs LM: Detecting Factual Errors via Cross Examination
arXiv 2023
Roi Cohen, May Hamri, Mor Geva, Amir Globerson [paper] 2023.05
-
Do Language Models Know When They're Hallucinating References?
arXiv 2023
Ayush Agrawal, Lester Mackey, Adam Tauman Kalai [paper] 2023.05
-
Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs
arXiv 2023
Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, Bryan Hooi [paper] 2023.06
-
Zero-Resource Hallucination Prevention for Large Language Models
arXiv 2023
Junyu Luo, Cao Xiao, Fenglong Ma [paper] 2023.09
-
LLM Lies: Hallucinations are not Bugs, but Features as Adversarial Examples
arXiv 2023
Jia-Yu Yao, Kun-Peng Ning, Zhen-Hui Liu, Mu-Nan Ning, Li Yuan [paper] 2023.10
Faithfulness Hallucination Detection
-
Towards Faithful Neural Table-to-Text Generation with Content-Matching Constraints
ACL 2020
Zhenyi Wang, Xiaoyang Wang, Bang An, Dong Yu, Changyou Chen [paper] 2020.07
-
Entity-level Factual Consistency of Abstractive Text Summarization
EACL 2021
Feng Nan, Ramesh Nallapati, Zhiguo Wang, Cicero Nogueira dos Santos, Henghui Zhu, Dejiao Zhang, Kathleen McKeown, Bing Xiang [paper] 2021.04
-
Assessing The Factual Accuracy of Generated Text
KDD 2019
Ben Goodrich, Vinay Rao, Peter J. Liu, and Mohammad Saleh [paper] 2019.08
-
Ranking Generated Summaries by Correctness: An Interesting but Challenging Application for Natural Language Inference
ACL 2019
Tobias Falke, Leonardo F. R. Ribeiro, Prasetya Ajie Utama, Ido Dagan, Iryna Gurevych [paper] 2019.07
-
Looking Beyond Sentence-Level Natural Language Inference for Question Answering and Text Summarization
NAACL 2021
Anshuman Mishra, Dhruvesh Patel, Aparna Vijayakumar, Xiang Lorraine Li, Pavan Kapanipathi, Kartik Talamadupula [paper] 2021.06
-
Adversarial NLI for Factual Correctness in Text Summarisation Models
arXiv 2020
Mario Barrantes, Benedikt Herudek, Richard Wang [paper] 2020.05
-
Evaluating Factuality in Generation with Dependency-level Entailment
EMNLP 2020 findings
Tanya Goyal, Greg Durrett [paper] 2020.11
-
SummaC: Re-Visiting NLI-based Models for Inconsistency Detection in Summarization
TACL 2022
Philippe Laban, Tobias Schnabel, Paul N. Bennett, Marti A. Hearst [paper] 2021.11
-
Knowledge-Augmented Language Model Verification
EMNLP 2023
Jinheon Baek, Soyeong Jeong, Minki Kang, Jong C. Park, Sung Ju Hwang [paper] 2023.10
-
FEQA: A Question Answering Evaluation Framework for Faithfulness Assessment in Abstractive Summarization
ACL 2020
Esin Durmus, He He, Mona Diab [paper] 2020.07
-
Asking and Answering Questions to Evaluate the Factual Consistency of Summaries
ACL 2020
Alex Wang, Kyunghyun Cho, Mike Lewis [paper] 2020.07
-
QuestEval: Summarization Asks for Fact-based Evaluation
EMNLP 2021
Thomas Scialom, Paul-Alexis Dray, Sylvain Lamprier, Benjamin Piwowarski, Jacopo Staiano, Alex Wang, Patrick Gallinari [paper] 2021.11
-
Q2: Evaluating Factual Consistency in Knowledge-Grounded Dialogues via Question Generation and Question Answering
EMNLP 2021
Or Honovich, Leshem Choshen, Roee Aharoni, Ella Neeman, Idan Szpektor, Omri Abend [paper] 2021.11
-
QAFactEval: Improved QA-Based Factual Consistency Evaluation for Summarization
NAACL 2022
Alexander Fabbri, Chien-Sheng Wu, Wenhao Liu, Caiming Xiong [paper] 2022.07
-
On Hallucination and Predictive Uncertainty in Conditional Language Generation
EACL 2021
Yijun Xiao, William Yang Wang [paper] 2021.04
-
Looking for a Needle in a Haystack: A Comprehensive Study of Hallucinations in Neural Machine Translation
EACL 2023
Nuno M. Guerreiro, Elena Voita, André Martins [paper] 2023.05
-
Self-Checker: Plug-and-Play Modules for Fact-Checking with Large Language Models
arXiv 2023
Miaoran Li, Baolin Peng, Zhu Zhang [paper] 2023.05
-
Optimal Transport for Unsupervised Hallucination Detection in Neural Machine Translation
ACL 2023
Nuno M. Guerreiro, Pierre Colombo, Pablo Piantanida, André F. T. Martins [paper] 2022.12
-
ChatGPT as a Factual Inconsistency Evaluator for Text Summarization
arXiv 2023
Zheheng Luo, Qianqian Xie, Sophia Ananiadou [paper] 2023.03
-
Human-like Summarization Evaluation with ChatGPT
arXiv 2023
Mingqi Gao, Jie Ruan, Renliang Sun, Xunjian Yin, Shiping Yang, Xiaojun Wan [paper] 2023.04
-
LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond
arXiv 2023
Philippe Laban, Wojciech Kryściński, Divyansh Agarwal, Alexander R. Fabbri, Caiming Xiong, Shafiq Joty, Chien-Sheng Wu [paper] 2023.05
-
Multi-Dimensional Evaluation of Text Summarization with In-Context Learning
ACL 2023 findings
Sameer Jain, Vaishakh Keshava, Swarnashree Mysore Sathyendra, Patrick Fernandes, Pengfei Liu, Graham Neubig, Chunting Zhou [paper] 2023.06
-
Evaluating Correctness and Faithfulness of Instruction-Following Models for Question Answering
arXiv 2023
Vaibhav Adlakha, Parishad BehnamGhader, Xing Han Lu, Nicholas Meade, Siva Reddy [paper] 2023.07
Hallucination Evaluation Benchmarks
-
TruthfulQA: Measuring How Models Mimic Human Falsehoods
ACL 2022
Stephanie Lin, Jacob Hilton, Owain Evans [paper] 2021.09
-
RealTime QA: What's the Answer Right Now?
arXiv 2022
Jungo Kasai, Keisuke Sakaguchi, Yoichi Takahashi, Ronan Le Bras, Akari Asai, Xinyan Yu, Dragomir Radev, Noah A. Smith, Yejin Choi, Kentaro Inui [paper] 2022.07
-
Med-HALT: Medical Domain Hallucination Test for Large Language Models
arXiv 2023
Logesh Kumar Umapathi, Ankit Pal, Malaikannan Sankarasubbu [paper] 2023.07
-
Generating Benchmarks for Factuality Evaluation of Language Models
arXiv 2023
Dor Muhlgay, Ori Ram, Inbal Magar, Yoav Levine, Nir Ratner, Yonatan Belinkov, Omri Abend, Kevin Leyton-Brown, Amnon Shashua, Yoav Shoham [paper] 2023.07
-
ChineseFactEval: A Factuality Benchmark for Chinese LLMs
report
Binjie Wang, Ethan Chern, Pengfei Liu [github] 2023.09
-
Evaluating Hallucinations in Chinese Large Language Models
arXiv 2023
Qinyuan Cheng, Tianxiang Sun, Wenwei Zhang, Siyin Wang, Xiangyang Liu, Mozhi Zhang, Junliang He, Mianqiu Huang, Zhangyue Yin, Kai Chen, Xipeng Qiu [paper] 2023.10
-
FreshLLMs: Refreshing Large Language Models with Search Engine Augmentation
arXiv 2023
Tu Vu, Mohit Iyyer, Xuezhi Wang, Noah Constant, Jerry Wei, Jason Wei, Chris Tar, Yun-Hsuan Sung, Denny Zhou, Quoc Le, Thang Luong [paper] 2023.10
Hallucination Detection Benchmarks
-
SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models
EMNLP 2023
Potsawee Manakul, Adian Liusie, Mark J. F. Gales [paper] 2023.03
-
HaluEval: A Large-Scale Hallucination Evaluation Benchmark for Large Language Models
EMNLP 2023
Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, Ji-Rong Wen [paper] 2023.05
-
HalOmi: A Manually Annotated Benchmark for Multilingual Hallucination and Omission Detection in Machine Translation
arXiv 2023
David Dale, Elena Voita, Janice Lam, Prangthip Hansanti, Christophe Ropers, Elahe Kalbassi, Cynthia Gao, Loïc Barrault, Marta R. Costa-jussà [paper] 2023.05
-
BAMBOO: A Comprehensive Benchmark for Evaluating Long Text Modeling Capacities of Large Language Models
arXiv 2023
Zican Dong, Tianyi Tang, Junyi Li, Wayne Xin Zhao, Ji-Rong Wen [paper] 2023.09
-
FELM: Benchmarking Factuality Evaluation of Large Language Models
NeurIPS 2023
Shiqi Chen, Yiran Zhao, Jinghan Zhang, I-Chun Chern, Siyang Gao, Pengfei Liu, Junxian He [paper] 2023.09
-
A New Benchmark and Reverse Validation Method for Passage-level Hallucination Detection
EMNLP 2023 findings
Shiping Yang, Renliang Sun, Xiaojun Wan [paper] 2023.10
-
Fast and Accurate Factual Inconsistency Detection Over Long Documents
EMNLP 2023
Barrett Martin Lattimer, Patrick Chen, Xinyuan Zhang, Yi Yang [paper] 2023.10
-
Chainpoll: A high efficacy method for LLM hallucination detection
arXiv 2023
Robert Friel, Atindriyo Sanyal [paper] 2023.10
-
Improving Factual Consistency of Text Summarization by Adversarially Decoupling Comprehension and Embellishment Abilities of LLMs
arXiv 2023
Huawen Feng, Yan Fan, Xiong Liu, Ting-En Lin, Zekun Yao, Yuchuan Wu, Fei Huang, Yongbin Li, Qianli Ma [paper] 2023.10
-
SAC3: Reliable Hallucination Detection in Black-Box Language Models via Semantic-aware Cross-check Consistency
EMNLP 2023
Jiaxin Zhang, Zhuohang Li, Kamalika Das, Bradley A. Malin, Sricharan Kumar [paper] 2023.11
We present a comprehensive review of current methods for mitigating hallucinations in data-related hallucination, training-related hallucination, and inference-related hallucination.
Mitigating Misinformation and Biases
-
The Pile: An 800GB Dataset of Diverse Text for Language Modeling
arXiv 2021
Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, Connor Leahy [paper] 2021.01
-
Textbooks Are All You Need
arXiv 2023
Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, Yuanzhi Li [paper] 2023.06
-
Textbooks Are All You Need II: phi-1.5 technical report
arXiv 2023
Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, Yin Tat Lee [paper] 2023.09
-
Llama 2: Open Foundation and Fine-Tuned Chat Models
arXiv 2023
Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom [paper] 2023.07
-
Deduplication of Scholarly Documents using Locality Sensitive Hashing and Word Embeddings
IREC 2020
Bikash Gyawali, Lucas Anastasiou, Petr Knoth [paper] 2020.05
-
Deduplicating Training Data Makes Language Models Better
ACL 2022
Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-Burch, Nicholas Carlini [paper] 2021.07
-
SemDeDup: Data-efficient learning at web-scale through semantic deduplication
arXiv 2023
Amro Abbas, Kushal Tirumala, Dániel Simig, Surya Ganguli, Ari S. Morcos [paper] 2023.03
-
FairPy: A Toolkit for Evaluation of Social Biases and their Mitigation in Large Language Models
arXiv 2023
Hrishikesh Viswanath, Tianyi Zhang [paper] 2023.02
Mitigating Knowledge Boundary
-
Knowledge Neurons in Pretrained Transformers
ACL 2022
Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, Furu Wei [paper] 2022.03 -
Locating and Editing Factual Associations in GPT
NeurIPS 2022
Kevin Meng, David Bau, Alex Andonian, Yonatan Belinkov [paper] 2023.01 -
Mass-Editing Memory in a Transformer
ICLR 2023
Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, David Bau [paper] 2023.08 -
Editing Factual Knowledge in Language Models
EMNLP 2021
Nicola De Cao, Wilker Aziz, Ivan Titov [paper] 2021.09 -
Fast Model Editing at Scale
ICLR 2022
Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, Christopher D. Manning [paper] 2022.06 -
Memory-Based Model Editing at Scale
ICML 2022
Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, Chelsea Finn [paper] 2022.06 -
Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors
NeurIPS 2023
Thomas Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, Marzyeh Ghassemi [paper] 2022.09 -
Transformer-Patcher: One Mistake Worth One Neuron
ICLR 2023
Zeyu Huang, Yikang Shen, Xiaofeng Zhang , Jie Zhou, Wenge Rong, Zhang Xiong [paper] 2023.01 -
Neural Knowledge Bank for Pretrained Transformers
NLPCC 2023
Damai Dai, Wenbin Jiang, Qingxiu Dong, Yajuan Lyu, Qiaoqiao She, Zhifang Sui [paper] 2022.08 -
Calibrating Factual Knowledge in Pretrained Language Models
EMNLP 2022 findings
Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu, Zhifang Sui, Lei Li [paper] 2022.10 -
Editable Neural Networks
ICLR 2020
Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitriy Pyrkin, Sergei Popov, Artem Babenko [paper]2022.07 -
Editing Large Language Models: Problems, Methods, and Opportunities
EMNLP 2023
Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen, Ningyu Zhang [paper] 2023.05
-
Editing Factual Knowledge in Language Models
EMNLP 2021
Nicola De Cao, Wilker Aziz, Ivan Titov [paper] 2021.04
-
MQuAKE: Assessing Knowledge Editing in Language Models via Multi-Hop Questions
EMNLP 2023
Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, Danqi Chen [paper] 2023.05
-
Eva-KELLM: A New Benchmark for Evaluating Knowledge Editing of LLMs
arXiv 2023
Suhang Wu, Minlong Peng, Yue Chen, Jinsong Su, Mingming Sun [paper] 2023.08
-
Cross-Lingual Knowledge Editing in Large Language Models
arXiv 2023
Jiaan Wang, Yunlong Liang, Zengkui Sun, Yuxuan Cao, Jiarong Xu [paper] 2023.09
-
Emptying the Ocean with a Spoon: Should We Edit Models?
arXiv 2023
Yuval Pinter, Michael Elhadad [paper] 2023.10
-
In-Context Retrieval-Augmented Language Models
TACL 2023
Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay, Amnon Shashua, Kevin Leyton-Brown, Yoav Shoham [paper] 2023.02
-
REPLUG: Retrieval-Augmented Black-Box Language Models
arXiv 2023
Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettlemoyer, Wen-tau Yih [paper] 2023.01
-
Augmented Large Language Models with Parametric Knowledge Guiding
arXiv 2023
Ziyang Luo, Can Xu, Pu Zhao, Xiubo Geng, Chongyang Tao, Jing Ma, Qingwei Lin, Daxin Jiang [paper] 2023.05
-
Decomposed Prompting: A Modular Approach for Solving Complex Tasks
ICLR 2023
Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, Ashish Sabharwal [paper] 2022.10
-
ReAct: Synergizing Reasoning and Acting in Language Models
ICLR 2023
Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, Yuan Cao [paper] 2022.10
-
Measuring and Narrowing the Compositionality Gap in Language Models
EMNLP 2023
Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, Mike Lewis [paper] 2022.10
-
Rethinking with Retrieval: Faithful Large Language Model Inference
arXiv 2023
Hangfeng He, Hongming Zhang, Dan Roth [paper] 2023.01
-
Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions
ACL 2023
Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, Ashish Sabharwal [paper] 2022.12
-
Mitigating Language Model Hallucination with Interactive Question-Knowledge Alignment
arXiv 2023
Shuo Zhang, Liangming Pan, Junzhou Zhao, William Yang Wang [paper] 2023.05
-
Enhancing Retrieval-Augmented Large Language Models with Iterative Retrieval-Generation Synergy
arXiv 2023
Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, Weizhu Chen [paper]
-
Active Retrieval Augmented Generation
arXiv 2023
Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu, Yiming Yang, Jamie Callan, Graham Neubig [paper] 2023.06
-
Retrieval-Generation Synergy Augmented Large Language Models
arXiv 2023
Zhangyin Feng, Xiaocheng Feng, Dezhi Zhao, Maojin Yang, Bing Qin [paper] 2023.10
-
RARR: Researching and Revising What Language Models Say, Using Language Models
ACL 2023
Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony Chen, Arun Tejasvi Chaganty, Yicheng Fan, Vincent Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, Kelvin Guu [paper] 2022.10
-
Verify-and-Edit: A Knowledge-Enhanced Chain-of-Thought Framework
ACL 2023
Ruochen Zhao, Xingxuan Li, Shafiq Joty, Chengwei Qin, Lidong Bing [paper] 2023.05
-
Improving Language Models via Plug-and-Play Retrieval Feedback
arXiv 2023
Wenhao Yu, Zhihan Zhang, Zhenwen Liang, Meng Jiang, Ashish Sabharwal [paper] 2023.05
-
PURR: Efficiently Editing Language Model Hallucinations by Denoising Language Model Corruptions
arXiv 2023
Anthony Chen, Panupong Pasupat, Sameer Singh, Hongrae Lee, Kelvin Guu [paper] 2023.05
-
Knowledge-Augmented Language Model Prompting for Zero-Shot Knowledge Graph Question Answering
arXiv 2023
Jinheon Baek, Alham Fikri Aji, Amir Saffari [paper] 2023.06
-
WikiChat: Stopping the Hallucination of Large Language Model Chatbots by Few-Shot Grounding on Wikipedia
EMNLP 2023 findings
Sina J. Semnani, Violet Z. Yao, Heidi C. Zhang, Monica S. Lam [paper] [github] [demo] 2023.05
-
Impact of Co-occurrence on Factual Knowledge of Large Language Models
EMNLP 2023 findings
Cheongwoong Kang, Jaesik Choi [paper] 2023.10
-
MQuAKE: Assessing Knowledge Editing in Language Models via Multi-Hop Questions
EMNLP 2023
Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, Danqi Chen [paper] 2023.05
-
Why Does ChatGPT Fall Short in Providing Truthful Answers?
arXiv 2023
Shen Zheng, Jie Huang, Kevin Chen-Chuan Chang [paper] 2023.04
-
CAR: Conceptualization-Augmented Reasoner for Zero-Shot Commonsense Question Answering
EMNLP 2023 findings
Weiqi Wang, Tianqing Fang, Wenxuan Ding, Baixuan Xu, Xin Liu, Yangqiu Song, Antoine Bosselut [paper] 2023.05
Mitigating Pretraining-related Hallucination
-
BatGPT: A Bidirectional Autoregessive Talker from Generative Pre-trained Transformer
arXiv 2023
Zuchao Li, Shitou Zhang, Hai Zhao, Yifei Yang, Dongjie Yang [paper] 2023.07
-
Exposing Attention Glitches with Flip-Flop Language Modeling
arXiv 2023
Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, Cyril Zhang [paper] 2023.06
-
Factuality Enhanced Language Models for Open-Ended Text Generation
NeurIPS 20222
Nayeon Lee, Wei Ping, Peng Xu, Mostofa Patwary, Pascale Fung, Mohammad Shoeybi, Bryan Catanzaro [paper] 2022.06
-
In-Context Pretraining: Language Modeling Beyond Document Boundaries
arXiv 2023
Weijia Shi, Sewon Min, Maria Lomeli, Chunting Zhou, Margaret Li, Xi Victoria Lin, Noah A. Smith, Luke Zettlemoyer, Scott Yih, Mike Lewis [paper] 2023.10
-
Progressive Translation: Improving Domain Robustness of Neural Machine Translation with Intermediate Sequences
ACL 2023 findings
Chaojun Wang, Yang Liu, Wai Lam [paper] 2023.05
Mitigating Misalignment Hallucination
-
Self-critiquing models for assisting human evaluators
arXiv 2022
William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, Jan Leike [paper] 2022.06
-
Measuring Progress on Scalable Oversight for Large Language Models
arXiv 2022
Samuel R. Bowman, Jeeyoon Hyun, Ethan Perez, Edwin Chen, Craig Pettit, Scott Heiner, Kamilė Lukošiūtė, Amanda Askell, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Christopher Olah, Daniela Amodei, Dario Amodei, Dawn Drain, Dustin Li, Eli Tran-Johnson, Jackson Kernion, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Liane Lovitt, Nelson Elhage, Nicholas Schiefer, Nicholas Joseph, Noemí Mercado, Nova DasSarma, Robin Larson, Sam McCandlish, Sandipan Kundu, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Timothy Telleen-Lawton, Tom Brown, Tom Henighan, Tristan Hume, Yuntao Bai, Zac Hatfield-Dodds, Ben Mann, Jared Kaplan [paper] 2022.11
-
Simple synthetic data reduces sycophancy in large language models
arXiv 2023
Jerry Wei, Da Huang, Yifeng Lu, Denny Zhou, Quoc V. Le [paper] 2023.08
-
Towards Understanding Sycophancy in Language Models
arXiv 2023
Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R. Bowman, Newton Cheng, Esin Durmus, Zac Hatfield-Dodds, Scott R. Johnston, Shauna Kravec, Timothy Maxwell, Sam McCandlish, Kamal Ndousse, Oliver Rausch, Nicholas Schiefer, Da Yan, Miranda Zhang, Ethan Perez [paper] 2023.10
-
Reducing sycophancy and improving honesty via activation steering
blog
Nina Rimsky [blog] 2023.07
Factuality Enhanced Decoding
-
Factuality Enhanced Language Models for Open-Ended Text Generation
NeurIPS 20222
Nayeon Lee, Wei Ping, Peng Xu, Mostofa Patwary, Pascale Fung, Mohammad Shoeybi, Bryan Catanzaro [paper] 2022.06
-
Inference-Time Intervention: Eliciting Truthful Answers from a Language Model
arXiv 2023
Kenneth Li, Oam Patel, Fernanda Viégas, Hanspeter Pfister, Martin Wattenberg [paper] 2023.06
-
DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language Models
arXiv 2023
Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James Glass, Pengcheng He [paper] 2023.09
-
Mixtape: Breaking the Softmax Bottleneck Efficiently
NeurIPS 2019
Zhilin Yang, Thang Luong, Russ R. Salakhutdinov, Quoc V. Le [paper] 2019.12
-
Revisiting the Architectures like Pointer Networks to Efficiently Improve the Next Word Distribution, Summarization Factuality, and Beyond
ACL 2023 findings
Haw-Shiuan Chang, Zonghai Yao, Alolika Gon, Hong Yu, Andrew McCallum [paper] 2023.03
-
Closing the Curious Case of Neural Text Degeneration
arXiv 2023
Matthew Finlayson, John Hewitt, Alexander Koller, Swabha Swayamdipta, Ashish Sabharwal [paper] 2023.10
-
Chain-of-Verification Reduces Hallucination in Large Language Models
arXiv 2023
Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz, Jason Weston [paper] 2023.09
-
Towards Mitigating Hallucination in Large Language Models via Self-Reflection
EMNLP 2023 findings
Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, Pascale Fung [paper] 2023.10
Faithfulness Enhanced Decoding
-
Sticking to the Facts: Confident Decoding for Faithful Data-to-Text Generation
arXiv 2019
Ran Tian, Shashi Narayan, Thibault Sellam, Ankur P. Parikh [paper]
-
Mutual Information Alleviates Hallucinations in Abstractive Summarization
EMNLP 2022
Liam van der Poel, Ryan Cotterell, Clara Meister [paper] 2022.10
-
Contrastive Decoding: Open-ended Text Generation as Optimization
ACL 2023
Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke Zettlemoyer, Mike Lewis [paper] 2022.10
-
Faithfulness-Aware Decoding Strategies for Abstractive Summarization
EACL 2023
David Wan, Mengwen Liu, Kathleen McKeown, Markus Dreyer, Mohit Bansal [paper] 2023.03
-
Trusting Your Evidence: Hallucinate Less with Context-aware Decoding
arXiv 2023
Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia Tsvetkov, Luke Zettlemoyer, Scott Wen-tau Yih [paper] 2023.05
-
KL-Divergence Guided Temperature Sampling
arXiv 2023
Chung-Ching Chang, David Reitter, Renat Aksitov, Yun-Hsuan Sung [paper] 2023.06
-
Improving Translation Faithfulness of Large Language Models via Augmenting Instructions
arXiv 2023
Yijie Chen, Yijin Liu, Fandong Meng, Yufeng Chen, Jinan Xu, Jie Zhou [paper] 2023.08
-
Chain of Natural Language Inference for Reducing Large Language Model Ungrounded Hallucinations
arXiv 2023
Deren Lei, Yaxi Li, Mengya Hu, Mingyu Wang, Vincent Yun, Emily Ching, Eslam Kamal [paper] 2023.10
-
KCTS: Knowledge-Constrained Tree Search Decoding with Token-Level Hallucination Detection
EMNLP 2023
Sehyun Choi, Tianqing Fang, Zhaowei Wang, Yangqiu Song [paper] 2023.10
-
SCOTT: Self-Consistent Chain-of-Thought Distillation
ACL 2023
Peifeng Wang, Zhengyang Wang, Zheng Li, Yifan Gao, Bing Yin, Xiang Ren [paper] 2023.05
-
Contrastive Decoding Improves Reasoning in Large Language Models
arXiv 2023
Sean O'Brien, Mike Lewis [paper] 2023.09
-
Mitigating Hallucinations and Off-target Machine Translation with Source-Contrastive and Language-Contrastive Decoding
arXiv 2023
Rico Sennrich, Jannis Vamvas, Alireza Mohammadshahi [paper] 2023.09
If you find our survey useful, please cite the paper
@misc{huang2023survey,
title={A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions},
author={Lei Huang and Weijiang Yu and Weitao Ma and Weihong Zhong and Zhangyin Feng and Haotian Wang and Qianglong Chen and Weihua Peng and Xiaocheng Feng and Bing Qin and Ting Liu},
year={2023},
eprint={2311.05232},
archivePrefix={arXiv},
primaryClass={cs.CL}
}